《什么是数学》读后感(通用6篇)
认真品味一部名著后,你有什么体会呢?何不静下心来写写读后感呢?快来参考读后感是怎么写的吧,下面是小编整理的《什么是数学》读后感,希望能够帮助到大家。
《什么是数学》读后感 篇1
《什么是数学》——“对思想和方法的基本研究”是由美国R·柯朗、H·罗宾合著。
在序言里有这样两段话:一是数学对象是什么并不重要,重要的是做了什么。数学就艰难地徘徊在现实与非现实之间,它的意义不在于形式的抽象中,也不存在于具体的实物中;对于喜欢数理概念的哲学家,这可能是个问题,但确是数学的巨大力量所在——我们称它为所谓的“非现实的现实性”。数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。
二是有意义的数学就像用来讲述有趣故事的报纸杂志,但不像某些报纸杂志,它的故事必须是真实的,最好的数学就应该像文学作品,故事来源于你眼前活生生的生活,这使你把精力与感情投入投于其中。
由这两段话,我就联想到了我们正在研究的“生活课堂”。我们企图让我们的课堂与现实的生活世界相沟通,让课堂的内容与学生的已有生活经历相融通。这样无疑就让我们的课堂更加的具有生命的底色和生活的发展力。如果我们的数学课仅仅是解题课,仅仅是空洞的演算和推理,它是没有很强的生命力的。如果脱离了与现实世界的关联,这样的数学只是一门工具,是冰冷的没有温度的,没有生命力的。
而如何实现这两个关联和融通,这是我们所有老师尤其是数学老师要思考和解决的问题。我希冀从这本书中找到一些答案。
文章第五页有这样一段话:幸运的是,创造性的思维不过某些教条的哲学信仰而继续发展着,而如果思维屈从于这种信仰就会阻碍出现建设性的成就。不论对专家来说,还是对普通人来说,唯一能回答什么是数学这个问题的不是哲学,而是数学本身中的活生生的经验。
由此可见,数学来源于生活并高于生活,数学是对现实生活的抽象和高度的概括,数学是对生活中的一些现象和规律所进行的归纳和统整。因此而言,生活就是土地,而数学是在这片土地的滋养下开出的一株鲜花,或长出的一棵参天大树。数学的发展必须需要现实生活的滋养,才能获得源源不断的养料。所以说生活就是数学的源头活水,我们的“生活课堂”研究必须要认真地联系生活,与现实社会的发展紧密相关,我们的课堂才真正的具有生命力和不断的活力。这也是我们今后研究和努力的方向。
《什么是数学》读后感 篇2
常言道学而不思则罔。一次在某数学论坛闲逛,发现多人在谈论此书,而且评价都非常的高,想想又是和数学有关的,于是一时心血来潮就买了这本书,直到真正阅读此书时,这本书已经在抽屉积尘多时。读了之后才发现收获真的是太多了。
《什么是数学》既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。它是一本世界著名的数学科普读物。书中搜集了许多经典的数学珍品,给出了数学世界的一组有趣的、深入浅出的图画,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。
I·斯图尔特增写了新的一章,以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。
爱因斯坦评论说:“《什么是数学》是对整个数学领域中的基本概念及方法的透彻清晰的阐述。”阅读此书让我们明确知道了什么是数学?数学是对思想和方法的研究。而目前我们的数学教学有时竟演变成了空洞的解题训练。这种训练虽然可以提高形式推导的能力,但却不能导致真正的理解与深入的独立思考。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。所以,我们必须醒悟到数学教学应以培养思维能力为终极目的。阅读《什么是数学》,将对教师、学生和一般受过教育的人有一个建设性的改造,让大家真正理解数学是一个有机的整体,是科学思考与行动的基础。
作为一名数学教师,不仅要帮助学生学习掌握数学知识,更要注重培养学生的思维能力,掌握数学思想和方法。数学是一种思维方式,而绝不是解题训练。这是我们每一个数学教师都要注意的地方。回到我自己的教学,我想若让学生在整体上对数学有了一个认知,会让学生学起来不再觉得数学是那么枯燥和可怕。但若想像本书作者那样高屋建瓴,在课堂上学生生成的问题中,判断出哪些是数学本质的知识,纯熟地处理有关的数学内容,还要取决于我们身为师者的数学底蕴了。作为一名数学教师,不仅要帮助学生学习掌握数学知识,更要注重培养学生的思维能力,掌握数学思想和方法。所以,我们必须醒悟到数学教学应以培养思维能力为终极目的,而绝不是解题训练。这是我们每一个数学教师都要注意的地方,这也是我今后努力地方向。
《什么是数学》读后感 篇3
由柯朗与罗宾合著的《什么是数学》是一本世界数学名著。初版已过60年,曾有中译本由两家出版社在约20年前出版过。可喜的是,1996年牛津大学出版社又出了增订版,近期复旦大学出版社推出了该版的中文译本。
作为20世纪的杰出数学家,柯朗曾在当时的数学圣地———德国格丁根大学师从希尔伯特等数学巨匠。纳粹上台后,他来到美国,创办了举世闻名的柯朗研究所。关于柯朗,瑞德有一本传记《一位数学家的双城记》在我国翻译出版,里头有柯朗和同时代数学家的许多故事。单单翻翻书中的照片,当时优秀知识分子的集体形象伴随着如雷贯耳的名字跃入眼帘,足以令我们这些后辈学子仰慕不已。有意思的是,格丁根那些令人生畏的数学泰斗们,都写过精彩的数学普及读物,如希尔伯特的《直观几何》、克莱因的《高观点下的初等数学》、外尔的《对称》以及柯朗的《什么是数学》。这些作品的共同特点是高屋建瓴、厚积薄发。
阿贝尔曾经说过,要向大师学习,而不是向大师的门徒学习。因为大师们可以引领你快速地进入正道。
《什么是数学》一出版就得到了各方面的高度评价。爱因斯坦认为,这本书是“对整个数学领域中的基本概念及方法的透彻而清晰的阐述”。外尔和莫尔斯等数学大师也对之赞誉有加。《纽约时报》也肯花版面予以介绍。
单单从书名来看,这本书的内容、体裁有多种选择(选择太宽,有时既是自由也是难题),比方说,这本书既可以写成低幼读物,也可以是大块头的专著(类似闻名遐迩的布尔巴基《数学原本》之类)。柯朗选择的体裁大致就是今天所说的“高级科普”。高级科普的创作难度不在于知识的专深,而在于如何保持作者与广大读者之间必要的亲和力。它既要充分体现作者自身的想法,又要兼顾那些并非专家的读者。这方面失败和成功的例子都很多。而流传几十年而不衰、今天还要请数学科普名家斯图尔特增订这一事实,就已经证明了《什么是数学》注定是一本成功的经典名著。也许将来还会有个斯图尔特2来增订哩!写到这里,笔者在想,论文的价值在于引用率,那么科普著作的生命力是否在于它出修订或增订版呢?也许这是一个不错的指标。
除了体裁,柯朗还要面对另一个难题。20世纪的数学已经发展到了让人望洋兴叹的地步,如何在一本可以带出去郊游时随便翻翻的作品中,把这门异常发达的学科的面貌体现在读者面前呢?柯朗的做法是搜集很多数学上的“珍品”,每个方面的讲述并非深不见底,但也不是蜻蜓点水。适当地深入,然后在该结束的时候结束。这种既非盲人摸象、亦非解剖大象的方法,可以让普通读者也能粗略领悟到数学无比精巧的结构之美。这大概也是遵从了希尔伯特所倡导的数学作为一个有机整体的思想。
柯朗为这本书煞有其事地添加了副标题———“对思想和方法的基本研究”。所谓“研究”何以谈起呢?斯图尔特为我们作了揭示。原来,在相对浅显的字里行间,渗透着这样的思想骨架,即数学的`学科性。这种学科性并非某些人的自由创造,为抽象而抽象;但也不是完全从实物出发,尽管数学在现实生活中用途广泛。数学就跟植物学或天文学一样,学科性固有的“节律”促使它向前发展,而我们的职责是履行这种学科性。比如植物学家发现一个新物种、天文学家发现一颗新的恒星,就要记录下来,不记录才是不称职。如果碰巧这一新物种对人类战胜癌魔具有重大意义,那么这个植物学家保不定会得诺贝尔奖;如果这种植物对于人类没什么用处,植物学家可能顶多在百科全书中简略提及。而一开始就质问这种知识到底有没有实用价值,那就背离了学科固有的原则,乃是彻头彻尾的无知和错误。什么是有价值的,什么是价值不大的,什么该淘汰,这应由历史而不是人为决定。希尔伯特尽管谨慎地提出了23个问题,但他也同时警告说,预先去判断一个问题的价值往往是不可能的。现在看来,这些问题中有一部分之价值在数学发展史上确实没有当初想像的那么大。庞加莱说过,“要想预见数学的未来,适当的途径是研究它的历史与现状。”《什么是数学》选择了一些有价值的领域,这些领域都是发展成熟的,并且也是引人入胜的。
《什么是数学》的内容错落有致,层次分明。数学的三大版块———代数、几何和分析按章依次加以阐述。作者也注意到不同章节适当的衔接。全书从自然数谈起,然后引申到数论和数系的扩充,直到集合这个最一般的客体。第三章又转入几何作图,并与数域代数联系在一起。接下来的两章,作者从射影几何、非欧几何一直谈到拓扑学。最后三章重点阐述微积分及其应用。
数学或相关学科的重大问题,一直是发展数学理论的源泉和刺激。问题的重要性不在于难易程度,也不在于是否“高等”。通过穿插书中的一个个问题,我们可以看出活生生的数学研究过程。就拿解代数方程来说吧。由于提升了次数,便与几何作图联系起来,最终的发现是丰厚的:一是复数和代数基本定理的提出;二是群论的发明。另一方面,提升方程的元数,则导致矩阵、线性空间的概念,最终与群也有关系。单单一个解方程就搞出那么多名堂!
微积分是一个与代数方程有较大差异的领域,亦始终由一些有趣问题而触发。这些问题更多地来自物理,最著名的是最速降线、三体问题和关于肥皂膜张成极小曲面的普拉托问题;也有纯数学问题,如四色问题。这些表面上看起来毫不相干的问题,使得数学家将微积分拓展到微分方程、变分法、拓扑学和微分动力系统等重要分支。作者还加入了不少著名的“初等极值问题”,如等周问题、光路三角形、最短网络等。不仅增加了可读性,而且强调了这些历史名题对数学发展不可磨灭的功勋。
问题的提出是为了解决问题和提出新问题,最终目的不是炫耀自己的解题本领,而是强化理论武器,达到更高的境界和更广的视野。所以数学家不是工程师,整部数学史是数学家找问题,而不是问题找数学家。工程师、医师总希望问题少点好,而数学家恰恰相反。书中对问题背后新概念的把握可谓丝丝入扣,读来经常有得到“提升”的感觉。几个世纪以来,数学家把零零碎碎的问题在根子上寻找统一的努力,无疑树立了人类理性的伟大里程碑。
当然,柯朗没有看到数学的一些激动人心的新进展,如费马大定理、四色问题的证明,以及素数问题、纽结、分形和连续统假设等。这一切都由斯图尔特在第9章“最新进展”中做了精要而出色的介绍。
本书的参考文献也做得相当好,推荐阅读书目肯定花费了作者很多心思。这也是一本好的科普书的特征。
好作品要让读者常读常新。例如《西游记》,比起那些佛教典籍,太容易读懂了,但好玩的故事和浅显的文字背后,其思想上的玄妙实在不是一语、一人可以道破、穷尽的,故而历来评论绵绵不断;即便是普通读者,碰到一些社会现象,与小说中的情节做些类比,也有新的感悟。那么科学著作能否也达到同样的功效呢?至少,《什么是数学》这本书是做到了。
《什么是数学》读后感 篇4
今天,我们将从一系列公理开始,从自然数的产生一直说到实数理论的完善。你或许会对数学的“科学性”有一个新的认识。注意,本文的很大一部分内容并非直接来源《什么是数学》,这篇文章可以看作是《什么是数学》中有关章节的一个扩展。
自然数是数学界中最自然的数,它用来描述物体的个数,再抽象一些就是集合的元素个数。在人类文明的最早期,人们就已经很自然地用到了自然数。可以说,自然数是天然产生的,其余的一切都是从自然数出发慢慢扩展演变出来的。数学家Kronecker曾说过,上帝创造了自然数,其余的一切皆是人的劳作。 (God made the natural numbers; all else is the work of man.)
随着一些数学理论的发展,我们迫切地希望对自然数本身有一个数学描述。从逻辑上看,到底什么是自然数呢?历史上对自然数的数学描述有过很多的尝试。数学家Giuseppe Peano提出了一系列用于构造自然数算术体系的公理,称为Peano公理。Peano公理认为,自然数是一堆满足以下五个条件的符号:
1. 0是一个自然数;
2.每个自然数a都有一个后继自然数,记作S(a);
3.不存在后继为0的自然数;
4.不同的自然数有不同的后继。即若a≠b,则S(a)≠S(b);
5.如果一个自然数集合S包含0,并且集合中每一个数的后继仍在集合S中,则所有自然数都在集合S中。(这保证了数学归纳法的正确性)
形象地说,这五条公理规定了自然数是一个以0开头的单向有序链表。
自然数的加法和乘法可以简单地使用递归的方法来定义,即对任意一个自然数a,有:
a + 0 = a
a + S(b) = S(a+b)
a · 0 = 0
a · S(b) = a + (a·b)
其它运算可以借助加法和乘法来定义。例如,减法就是加法的逆运算,除法就是乘法的逆运算,“a≤b”的意思就是存在一个自然数c使得a+c=b。交换律、结合率和分配率这几个基本性质也可以从上面的定义出发推导出来。
Peano公理提出后,多数人认为这足以定义出自然数的运算,但Poincaré等人却开始质疑Peano算术体系的相容性:是否有可能从这些定义出发,经过一系列严格的数学推导,最后得出0=1之类的荒谬结论?如果一系列公理可以推导出两个互相矛盾的命题,我们就说这个公理体系是不相容的。Hilbert的23个问题中的第二个问题就是问,能否证明Peano算术体系是相容的。这个问题至今仍有争议。
在数学发展史上,引进负数的概念是一个重大的突破。我们希望当a
(a-b) + (c-d) = (a+c) – (b+d)
(a-b) · (c-d) = (ac + bd) – (ad + bc)
我们可以非常自然地把上面的规则扩展到a=b,符号(a-b)描述的是一个自然数;如果a
生活中遇到的另一个问题就是“不够分”、“不够除”一类的情况。三个人分六个饼,一个人两个饼;但要是三个人分五个饼咋办?此时,一种存在于两个相邻整数之间的数不可避免的产生了。为了更好地表述这种问题,我们用一个符号a/b来表示b个单位的消费者均分a个单位的物资。真正对数学发展起到决定性作用的一个步骤是把由两个数构成的符号a/b当成一个数来看待,并且定义一套它所服从的运算规则。借助“分饼”这类生活经验,我们可以看出,对于整数a, b, c,有(ac)/(bc)=a/b,并且(a/b)+(c/d) = (ad+bc)/(bd), (a/b)·(c/d)=(ac)/(bd)。为了让新的数能够用于度量长度、体积、质量,这种定义是必要的。但在数学历史上,数学家们经过了很长的时间才意识到:从逻辑上看,新的符号的运算规则只是我们的定义,它是不能被“证明”的,没有任何理由要求我们必须这么做。正如我们定义0的阶乘是1一样,这么做仅仅是为了让排列数A(n,n)仍然有意义并且符合原有的运算法则,但我们绝对不能“证明”出0!=1来。事实上,我们完全可以定义(a/b) + (c/d) = (a+c)/(b+d),它仍然满足基本的算术规律;虽然在我们看来,这种定义所导出的结果非常之荒谬,但没有任何规定强制我们不能这么定义。只要与原来的公理和定义没有冲突,这种定义也是允许的,它不过是一个不适用于度量这个世界的绝大多数物理量的、不被我们熟知和使用的、另一种新的算术体系罢了。
我们称所有形如a/b的数叫做有理数。有理数的出现让整个数系变得更加完整,四则运算在有理数的范围内是“封闭”的了,也就是说有理数与有理数之间加、减、乘、除的结果还是有理数,可以没有限制地进行下去。从这一角度来看,我们似乎不大可能再得到一个“在有理数之外”的数了。
当我们的数系扩展到有理数时,整个数系还出现了一个本质上的变化,这使我们更加相信数系的扩展已经到头了。我们说,有理数在数轴上是“稠密”的,任何两个有理数之间都有其它的有理数(比如它们俩的算术平均值)。事实上,在数轴上不管多么小的一段区间内,我们总能找到一个有理数(分母m足够大时,总有一个时刻1/m要比区间长度小,此时该区间内至少会出现一个分母为m的有理数)。这就使得人们会理所当然地认为,有理数已经完整地覆盖了整个数轴,所有的数都可以表示成a/b的形式。
难以置信的是,这样的数竟然不能覆盖整个数轴;除了形如a/b的数以外,数轴上竟然还有其它的数!这是早期希腊数学最重要的发现之一。那时,古希腊人证明了,不存在一个数a/b,使得其平方恰好等于2。平方之后等于2的数不是没有(可以用二分法找出这个数),只是它不能表示成两个整数之比罢了。用现在的话说就是,根号2不是有理数。你可以在这里看到至少5种证明根号2不能表示成整数与整数之比的方法。根号2这种数并不是凭空想象出来的没有实际意义的数,从几何上看它等于单位正方形的对角线长。我们现有的数竟然无法表达出单位正方形的对角线长这样一个简单的物理量!因此,我们有必要把我们的数系再次进行扩展,使其能够包含所有可能出现的量。我们把所有能写成整数或整数之比的数叫做“有理数”,而数轴上其它的数就叫做“无理数”。它们合在一起就是“实数”,代表了数轴上的每一个点。
其实,构造一个无理数远没有那么复杂。我们可以非常轻易地构造出一个无理数,从而说明无理数的存在性。把所有自然数串起来写在一起所得到的Champernowne常数0.12345678910111213141516…显然是个无理数。考虑用试除法把有理数展开成小数形式的过程,由于余数的值只有有限多种情况,某个时刻除出来的余数必然会与前面重复,因此其结果必然是一个循环小数;而Champernowne常数显然不是一个循环小数(不管你宣称它的循环节是什么,我都可以构造一个充分长的数字串,使得你的循环节中的某个数字根本没在串中出现,并且显然这个串将在Champernowne常数中出现无穷多次)。这个例子说明,数轴上还存在有大量的无理数,带根号的数只占无理数中微不足道的一部分。这个例子还告诉我们,不是所有的无理数都像pi一样可以用来测试人的记忆力和Geek程度。
在定义无理数的运算法则中,我们再次遇到了本文开头介绍自然数时所面临的问题:究竟什么是无理数?无理数的运算该如何定义?长期以来,数学家们一直受到这个问题的困惑。19世纪中期,德国数学家Richard Dedekind提出了Dedekind分割,巧妙地定义了无理数的运算,使实数理论得到了进一步的完善。
在此之前,我们一直是用有序数对来定义一种新的数,并定义出有序数对之间的等价关系和运算法则。但Champernowne常数这种让人无语的无理数的存在使得这种方法能继续用于无理数的定义的希望变得相当渺茫。Dedekind不是用两个或多个有理数的数组来定义无理数,而是用全体有理数的一个分割来定义无理数。我们把全体有理数分成两个集合A和B,使得A中的每一个元素都比B中的所有元素小。显然,满足这个条件的有理数分割有且仅有以下三种情况:
1. A中有一个最大的元素a。例如,定义A是所有小于等于1的有理数,B是所有大于1的有理数。
2. B中有一个最小的元素b。例如,定义A是所有小于1的有理数,B是所有大于等于1的有理数。
3. A中没有最大的元素,且B中没有最小的元素。例如,A由0、所有负有理数和所有平方后小于2的正有理数组成,B由所有平方后大于2的正有理数组成。每一次出现这种情况,我们就说这个分割描述了一个无理数。
注意,“A中有最大元素a且B中有最小元素b”这一情况是不可能出现的,这将违背有理数的稠密性。a和b都是有理数,它们之间一定存在其它的有理数,而这些有理数既不属于集合A,也不属于集合B,因此不是一个分割。
为什么每一种情况3都描述了一个确定的无理数呢?其实这非常的形象。由于A里面没有最大的元素,因此我们可以永不停息地从A里面取出越来越大的数;同样地,我们也可以不断从B里面取出越来越小的数。这两边的数将越来越靠近,它们中间夹着的那段区间将越来越小,其极限就是数轴上的一个确定的点,这个点大于所有A里的数且小于所有B里的数。但集合A和B已经包含了所有的有理数,因此这个极限一定是一个无理数。因此从本质上看,Dedekind分割的实质就是用一系列的有理数来逼近某个无理数。
你也许想到了,现在我们可以很自然地定义出无理数的运算。我们把一个无理数所对应的Dedekind分割记作(A,B),则两个无理数(A,B)和(C,D)相加的结果就是(P,Q),其中集合P中的元素是由A中的每个元素与C中的每个元素相加而得到,余下的有理数则都属于集合Q。我们也可以用类似的办法定义出无理数的乘法。另外,我们能够很快地验证,引入无理数后我们的运算仍然满足交换律、结合率等基本规律,这里就不再多讲了。
《什么是数学》读后感 篇5
什么是数学?数学家R.柯和H.罗宾,合写了一本数学科普读物告诉你。无论是数学专业人士,或是想学数学的人都可以阅读这本书。特别对高中生和大学生、中学数学教师,都是本极好的参考书。全书对整个数学领域中的基本概念与方法,做了精深而生动的阐述。《纽约时报》评论这本书既为初学者也为专家而写,同时也为学生和教师、哲学家和工程师而写,是一本极为完美的著作。
翻开这本书,才知道自己的数学专业知识方面有多缺失,感觉自己的数学水平还停留在小学阶段,甚至连中学所学的也忘的差不多了。尤其是实施新课程以来,常常都会感觉到自己对于教材的理解总是不能深入,看不透其本质。《什么是数学》这本书对数学思想和方法研究的专业书籍。对整个数学领域中的基本概念与方法,做了精深而生动的阐述。知识点一环扣一环,遵循严密的逻辑推理,而不是凭空跳出一个结论让你接受。里面的知识点还要细细的品,去咀嚼消化,把自己的一桶水壮大,真正悟出 什么是数学 。
数学,作为人类思维的表达形式,反映了人们积极进取的意志、慎密周详的推理以及对完美境界的追求。它的基本要素是逻辑和直观、分析和构作、一般性和个别性。 这句话,我似乎理解了为什么有的智慧的老师总在说数学的核心就是哲学。我想作为数学老师我们更重要的是要引导我们的学生要辩证的理解我们所学的知识。比如1/2比1/5大,在单位 1 不相同的情况,有时1/2也会比1/5小。
作为一名数学教师,不仅要帮助学生学习掌握数学知识,更要注重培养学生的思维能力,掌握数学思想和方法。数学是一种思维方式,而绝不是解题训练。这是我们每一个数学教师都要注意的地方。
《什么是数学》读后感 篇6
数学美的社会性:数学美是一种社会现象,因为数学美是对人而言的。数学家通过数学实践活动(特别是数学理论创造的实践活动),使自己的本质力量“对象化”了,或者说“自然人化”了。所谓的“人化”就是人格化,即自然物具有人的本质的印记,实质上就是社会化。这种社会化的内容正是数学美的内容,它是数学美产生的本原。
数学美的物质性:数学美的内容――人的本质力量必须通过某种形式呈现出来,必需要有附体,数学美的这种形式或附体,即数学美的物质属性。
数学美的宜人性:即数学美形式应该使审美主体感到愉悦。审美主体的愉悦性,一方面自然是由审美主体的心理和生理的原因造成的,另一方面,也是最根本的,还在于对象本身是具有足以引起主体愉悦的属性和条件。简言之,数学美的形式必须与人的认识、人类心灵深处的渴望的本质上相吻合。
数学美的体现
1、形象美
黑格尔说:“美只能在形象中出现。”谈到形象美,一些人便只联想到影视、雕塑或绘画等,而数学离形象美是遥不可及的。其实数学的数形结合,也可以组成世间万物的绚丽画面。
从幼儿时代伊伊学语的“1像小棒、2像小鸭、3像耳朵……”的直观形象,再到小学二、三年级所学的平均数的应用的宏观形象之美——商场货架货物平均间距摆放以及道路植树的平均间距……由平均数的应用给人们带来的美感不胜枚举。再到初中所学的“⊥”(垂直符号),看到这样的符号,就让我们联想起矗立在城市中的高楼大厦或一座屹然峻峭、拔地而起的山峰,给人以挺拔巍峨之美。“—”(水平线条),我们想起静谧的湖面,给人以平静心情的安然之美;看到“~”(曲线线条),我们又有小溪流水、随波逐流的流动乐章之美。到了高中的“∈”(属于符号),更是形象的表现了一种归属关系的美感。还有现在最新研究的数学分形几何图形,简直就是数学上帝造物主的完美之作。
2、对称美
对称是美学的基本法则之一,数学中许多轴对称、中心对称图形,都赋予了平衡、协调的对称美。就连一些数学概念本身都呈现了对称的意境——“整—分、奇—偶、和—差、曲—直、方—圆、分解—组合、平行—交叉、正比例—反比例”。自然界中无数原生物也都具有先天性的对称美,例如树叶、花朵、蝴蝶等等。人们根据数学这一美学,设计了许许多多具有这种特征美的产品来,例如房屋、饰品、服装等等。这种美不仅应用在了人们直观视觉里,而且还引申到“非纯对称的相对对称”的文学作品里,文学创作结构讲究“头尾呼应”(即相对对称),情节人物身份或性格也大部分是有着相对对称的特点。
3、和谐美
最具有这一美色的当属欧氏几何学的黄金比例(约0.618),它简直就是宇宙的美神。具有这一特色设计的五角星堪称是一种巫术的设计标志;黄金分割比是解身材优美的密码。由黄金分割引荐的黄金矩形(矩形长、宽比例是黄金比),它在形式比例上具有相当高的美学价值,如生活中的许多物品(国旗、图书、火柴盒等)都采用了这一优美图形。传说中,蒙娜丽纱的脸就是黄金矩形的脸,所以才会留下千古流芳的“蒙娜丽纱微笑”。哪里有黄金比,哪里就有美的闪光。
还有一些优美的曲线是数学形象美与和谐的结合产物。如得之于自然界的四叶玫瑰线、对数螺旋线,还有那久负盛名的莫比乌斯曲线。莫比乌斯曲线的和谐美不仅局限于它的外观,它还体现在“在二维空间里构造一维空间”的合二为一的高度内敛的和谐美。把一个长纸条,一端扭转后再与另一端粘贴起来,那么当一只蚂蚁从纸条任意一点沿着一面出发,却可途经纸条的两面所有路线之后而又回到原点。这一神奇的“合二为一”构造术映射出了一个伟大的数学与交际结合的哲理——化敌为友,敌友一家亲并非妄然。
四叶玫瑰线 :
对数螺旋线:
莫比乌斯曲线:
黄金矩形:
数的外在美,是一种没有经过加工的自然美,毕达哥拉斯将自然界和数统一在一起,他说:凡物皆数。伽利略说:自然这本书是用数学语言写成的。我说:我的人生是数的人生。
4、秩序美
毕达哥拉斯认为,数本身就是世界的秩序、宇宙的秩序。数学追求的目标是从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。这是数学美之秩序性的体现。人类的生存是按照美的秩序原则来构建的,追求美实质上就是追求秩序,而数就是世界、宇宙的秩序。那也就是说人们追求美就是在追求秩序,就是在追求数。数学中有一些微观的数字本身具有秩序美的。220和284就是一对有着秩序美的亲和数,它们又称为象征着人们无间亲密的联谊数或婚姻数。220的全部真因子(不含本身)1、2、4、5、10、11、20、22、44、55、110之和为284,而284的全部真因子1、2、4、71、142之和又恰为220。这种“你中有我,我中有你”的、有着形象逼真秩序美的亲和数,是数学之神送给人类美好祝愿的最神圣的礼物。
5、简洁美、严谨美、逻辑美、秩序美
数学内在的各种美,有时可独立存在,有时又象是一个大家庭,相互统一团结在一起。
复杂的自然界中所有的一切,数学家都可以用自己简单的数字公式或语言高度抽象出来。他们以其简洁的形式,从一组简洁明了的公理、概念出发,进行精确计算、严谨推理,就可抽象推论出各种令人惊叹的定理或公式,使人们洞察到数学的内在和谐、严谨、逻辑和秩序性。计算机的代码简单得只有0和1,却可编写出无数深奥无比的程序软件;质数的定义:“只有1和它本身两个约数的数”中的一个“只”字一字值千金;“两点确定一条直线”中的“确定”高度概括了定义的严谨性。用简单的形式表达深遂的内涵,如同绘图时只用三种原色确可绘制出各种色彩缤纷的图画来,又如同音乐简谱中只凭借七个音符确谱写出了千万首动人的乐章……
“世事纷繁,加减乘除算尽;宇宙广大,点线面体包完。”言简意核,归纳人世百态、宇宙万物。
数是美的原素,数学是美丽的学科!真正的数学家把对数学的研究、追求当作有着艺术享受的快乐。“美好事物总是一种永久享受!”世界上没有什么力量能把数学家从他的“美人”身边拉走,他们是世界上最忠贞的情人,他们会一生许多次堕入爱河,每一次的对象都是同一个人。
【《什么是数学》读后感(通用6篇)】相关文章:
什么是疯牛病06-17
什么是起兴05-17
分清什么是目标什么是目的励志文章01-21
什么是建安风骨05-16
什么是同义词08-05
为什么眼泪是咸07-10
狗为什么是色盲06-03
什么是读书笔记?11-01
什么是通假字07-24
什么是真情励志文章01-21