平行四边形的面积教学设计(经典15篇)
我要投稿 投诉建议

平行四边形的面积教学设计

时间:2024-10-15 13:42:08 教学设计 我要投稿

平行四边形的面积教学设计(经典15篇)

  作为一位不辞辛劳的人民教师,总不可避免地需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么优秀的教学设计是什么样的呢?下面是小编整理的平行四边形的面积教学设计,仅供参考,希望能够帮助到大家。

平行四边形的面积教学设计(经典15篇)

平行四边形的面积教学设计1

  内容简析:

  平行四边行的面积是人教版五年级上册第六单元第一节内容,本视频以面积公式的推导和公式的应用为主要内容。

  教学目标:

  1、使学生经历探索平行四边形面积计算公式的推导过程,渗透转化的思想。

  2、掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

  教学重点:

  探索并掌握平行四边形的面积计算公式,渗透转化的思想。

  教学设想:

  学习完平行四边行的面积,接下来要学习三角形、梯形的面积。所以通过这个视频要给学生渗透转化的思想,为下节课的学习打好基础。让学生理解、领悟,体验计算公式的推导生成显得尤为重要。

  教学过程:

  一、复习引入

  同学们三年级时我们学习了长方形、正方形的面积,今天我们一起来研究平行四边形的面积。

  二、质疑猜想

  师:对于面积,大家并不陌生。我们已经学过长方形和正方形等平面图形的面积,例如:长方形的面积=长×宽。

  质疑:平行四边形的面积怎样计算得出呢?

  三、操作验证

  用数方格的`方法发现长方形和平行四边形的面积相等。要求:不满一格的算半格。

  2、验证面积=底×高

  那平行四边形的面积与底和高会不会有关系呢?现在我们利用转化的方法来验证一下。

  将平行四边形沿着底边上的任意一条高剪开,平移,可以拼成一个长方形。则平行四边形的面积就是长方形的面积,平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。长方形的面积=长×宽,所以平行四边形的面积=底×高。如果用字母S表示面积,a表示底,h表示高。则S=ah。

  四、公式应用

  学会了平行四边形的面积公式,我们可以用它来解决生活中的一些实际问题。

  有一个平行四边形的草坪,底是6米,高是4米,它的面积是多少?

  S=ah=6×4=24(平方米)

  五、全课总结

  回想一下刚才我们的学习过程,你有什么收获?

平行四边形的面积教学设计2

  教学重点:

  平行四边形面积的推导过程.

  本课采用的教法:

  自学法、转化方法、小组合作法、实验法。

  学法:

  1、自主学习法

  2、小组合作探究学习法。

  教学程序:

  一、创设问题情景,为新课作铺垫。

  请同学们帮李师傅的一个忙,

  求出下面的面积,你是怎样想的?3厘米

  5厘米

  二突出学生主体地位,发展学生的创新思维。

  首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

  有的同学说:长方形面积与平行四边形面积相等(数出来的).有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等.还有的.说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽.有的说:我猜想平行四边形的面积等于底乘高.通过同学们发现与猜想

  三小组合作,培养学生的合作精神.

  小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考.汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形.长方形的长相当与平形四边形的底,宽相当与平行四边形的高.长方形面积与平行四边形的面积相等.我想平行四边形面积=底乘高

  学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

  学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形.但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点.

  四例题独立完成,体现学生自己解决问题的能力.

  例题自己解决,学生切实体验到数学的应用价值,提高学生学习数学信心.

  板书设计:

  长方形面积==长乘宽

  平行四边形面积=底乘高

平行四边形的面积教学设计3

  【教学内容】:

  青岛版实验教材小学数学五年级上册第76页内容。

  【教学目标】:

  1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

  2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。

  3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。

  【教学准备】:

  学生:方格图、平行四边形纸片、直尺、剪刀、三角尺

  教师:课件、投影仪

  【教学过程】:

  一、谈话引入,提出问题

  师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?

  (1:虾池的面积是多少? 2:虾池是什么形状的?……)

  师:虾池是什么形状的?(平行四边形)

  师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)

  二、合作探索,解决问题

  1、猜想

  师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)

  师:希不希望通过自己的探究找到这个公式?

  师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。

  (学生独立思考)。

  师:谁来说?

  (1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)

  师:谁有不同想法?

  (2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)

  师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)

  师:对!我们要逐个进行验证,看看正确的公式究竟是什么。

  为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)

  1、小组同学先讨论验证的方法,再动手验证。

  2、小组成员要团结合作,合理分工。

  3、每组推选1名代表进行汇报,其他组员可以补充

  4、使用学具时注意安全,用完后装入信封。

  2、验证“底×邻边”

  师:先来验证“底×邻边”这个猜想对不对。

  比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。

  (学生合作,教师巡视)

  3、交流

  师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?

  (我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)

  师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)

  师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。

  4、验证“底×高”

  (学生活动,教师参与)

  5、交流

  师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?

  (1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。

  师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)

  (2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)

  师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?

  师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)

  师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。

  师:是不是沿着平行四边形的`任意一条高裁剪都可以?(是的)

  师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?

  (平行四边形没有“长”和“宽”。)

  师:说的真好,我们可不能混淆了。

  三.应用公式,巩固训练

  师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)

  师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)

  师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))

  师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?

  (出示课件:四个挑战)

  1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?

  为什么?(单位:厘米 图略)

  2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)

  3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?

  4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?

  (图略)

  师:真不错,挑战成功。

  四.收获平台,课外延伸

  师:不知不觉中就要下课了。想一想,这节课你有哪些收获?

  (我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)

  师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?

  (猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)

平行四边形的面积教学设计4

  教学内容:

  人教版小学《数学》五年级上册,平行四边形的面积。

  教学目标:

  1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

  2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

  3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重点:探索并掌握平行四边形的面积计算公式。

  教学难点:理解平行四边形的面积计算公式的推导过程。

  教学过程:

  一、巧设情境,铺垫导入

  师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?

  (根据学生的回答,教师适时板书:长方形的面积=长×宽)

  师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)

  师:这样一拉,形状变了,面积变了吗?

  师:(对认为面积不变的同学质疑)你认为平行四边形的'面积是怎样计算的?

  (平行四边形的面积等于相邻两条边的乘积)

  师:究竟这个猜想是否正确,下面我们一起来验证一下就知道了。

  请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 .拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.

  师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)

  二、合作探索,迁移创造

  1、图形转换

  师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)

  师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)

  2、探讨联系

  师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)

  师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

  3、推导公式

  师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)

  (教师根据学生回答板书:平行四边形的面积=底×高)

  师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

  (教师根据学生回答板书:S=ah)

  4、验证公式

  师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)

  师:计算出来的结果和我们数方格得出的结果一样吗?(一样)

  师:这证明我们所推导出来的平行四边形面积公式是正确的。

  5、提问质疑

  师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)

  三、层层递进,拓展深化

  1、算一算

  师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  2、选一选

  师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  3、画一画

  师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)

  4、想一想

  师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)

  师:你发现了什么规律?(引导学生理解等底等高的平行四边形

  面积相等。)

  四、总结全课,提高认识

  回顾刚才我们的学习过程,你有什么收获?

  教学反思:

  本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。

  1、前后呼应,浑然一体

  利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。

  把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。

  2、合作探索,迁移创造

  在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。

平行四边形的面积教学设计5

  一、教学目标

  (一)知识与技能

  让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的`实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  通过活动,培养学生的探索精神,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:探索并掌握平行四边形面积计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

  四、教学过程

  (一)创设情境,激趣导入

  1。创设情境。

  (1)呈现教材第86页单元主题图。(PPT课件演示)

  1。怎么制作PPT课件算平行四边形面积

  2。五年级上册数学组合图形面积教案

  3。PPT模板怎样制作平行四边形面积推导动画

  4。PPPT怎么制作动画课件计算平行四边形面积

  5。五年级上册数学图形与几何教案

平行四边形的面积教学设计6

  教学内容分析:

  平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。

  设计的理念:

  学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。

  教学目标:

  1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。

  3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。

  教学重点:

  使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。

  教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。

  教学过程:

  一、创设情境、导入新课。

  多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。

  师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

  生:会计算长方形面积,不会计算平行四边形的面积。

  师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)

  [设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]

  二、探究平行四边形的面积。

  1.用数方格的方法探索计算面积。

  师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?

  生1:我想把平行四边形拉成一个长方形。

  生2:我想用数方格子的方法来计算。

  ……

  师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。

  (2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。

  说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一起来交流一下是是怎样数的,请把数出的结果填在表格中。

  同桌合作完成:

  4.汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?

  平行四边形

  底

  高

  面积

  长方形

  长

  宽

  面积

  通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  [设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]

  2.推导平行四边形面积计算公式。

  (1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?

  生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。

  师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?

  学生讨论,鼓励学生大胆发表意见。

  (2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。

  (3)分组合作动手操作,探索图形的转化。

  各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的.图形展示在黑板上,并说一说演示的过程和自己的一些想法。

  生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。

  引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。

  用多媒体演示平移和拼的过程。剪——平移——拼。

  [设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]

  (4)小组讨论,合作交流,探索平行四边形的面积计算公式。

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论后,根据学生回答情况出示讨论题目给学生。

  拼出的长方形和原来的平行四边形相比,面积变了没有?

  拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

  [设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]

  (5)小组交流汇报,归纳叙述出自己的推导过程。

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?

  因为:长方形的面积=长×宽,

  所以:平行四边形的面积=底×高

  如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah

  学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)

  3、平行四边形面积计算公式的应用。

  既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。

  (1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?

  生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。

  (2)运用平行四边形面积计算公式让学生自学例1。

  师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。

  学生板书例1的结果;s=ah=6×4=24(平方米)

  [设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]

  三、巩固拓展。

  1、给下面各题目填空。

  (1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。

  (2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。

  (3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。

  [设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]

  2、你能想办法求出下面两个平行四边形的面积吗?

  3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。

  [设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]

  四、课堂总结

  通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。

  请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?

  板书设计:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  用字母表示是:S=a×h=a·h=ah

平行四边形的面积教学设计7

  教学目标

  1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

  3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学

  重难点

  教学重点:理解并掌握平行四边形的面积公式

  教学难点:理解平行四边形面积公式的推导过程

  课前准备

  多媒体课件

  教学过程

  师生活动

  思考与调整

  一、复习导入:

  1、说出学过的平面图形。

  2、在这些图形中,哪些图形的面积你会求?

  二、探究新知:

  1、教学例1:

  (1)出示例1中的第1组图

  要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

  (2)出示例1中的第2组图

  要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)

  (3)揭示课题:

  师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的'面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)

  2、教学例2:

  (1)出示一个平行四边形

  师:你能想办法把这个平行四边形转化成学过的图形吗?

  (2)学生操作,教师巡视指导。

  (3)学生交流操作情况

  第一种:①沿着平行四边形的高剪下左边的直角三角形。

  ②把这个三角形向右平移。

  ③到斜边重合。

  第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。

  ②把左侧的梯形向右平移。

  ③道斜边重合。

  (4)教室用课件进行演示并小结。

  师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。

  师生活动

  思考与调整

  (5)小组讨论:

  ①转化后长方形的面积与原平行四边形面积相等吗?

  ②长方形的长与平行四边形的底有什么关系?

  ③长方形的宽与平行四边形的高有什么关系?

  (6)学生总结,形成下面的板书:

  长方形的面积=长X宽

  平行四边形的面积=底X高

  3、教学例3:

  (1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。

  转化后的长方形

  平行四边形

  长(cm)

  宽(cm)

  面积(cm)

  底(cm)

  高(cm)

  面积(cm)

  (2)学生操作,反馈交流。

  (3)用字母表示面公式:S=ah(板书)

  三、巩固练习:

  1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

  2、指导完成练一练:强调底和高的对应关系。

  四、总结:

  师:通过今天的学习有哪些收获?

  板书设计:平行四边形面积的计算

  转化

  已学过的图形新图形

  割补、剪拼

  因为长方形的面积=长×宽

  所以平行四边形的面积=底×高

平行四边形的面积教学设计8

  一、教学目标

  (一)知识与技能

  让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  通过活动,培养学生的探索精神,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:探索并掌握平行四边形面积计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

  四、教学过程

  (一)创设情境,激趣导入

  1.创设情境。

  (1)呈现教材第86页单元主题图。(PPT课件演示)

  教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形?

  (2)学生汇报交流。

  (3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算?

  预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。

  (4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积)

  2.揭示本节课题。

  复习引入。(PPT课件演示)

  请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

  【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。

  (二)主动探索,推导公式

  1.用面积单位测量平行四边形的面积。

  (1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)

  引导学生回顾用面积单位测量图形面积的方法。

  (2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)

  (3)学生先独立数平行四边形的面积,再互相交流。

  预设平行四边形的面积:

  方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米;

  方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。

  长方形的面积:长6米,宽4米,面积是6×4=24(平方米)。

  (4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。

  (5)填写表格。

  ①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)

  ②引导学生观察:观察这个表格,你发现了什么?

  ③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底×高。

  【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。

  2.操作思考,推导公式。

  (1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢?

  这个平行四边形的.面积恰好等于底×高,那是不是所有的平行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示)

  (2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。

  (3)操作转化,推导公式。

  ①操作转化。

  a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。

  b.学生展示汇报。(PPT课件演示)

  c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么?

  ②观察思考。

  a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)

  b.思考:平行四边形的底和长方形的( )相等,平行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)

  c.学生汇报。(教师板书)

  ③概括公式。

  你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)

  (4)回顾与小结。

  ①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?

  ②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。

  【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。

  (三)巩固运用,解决问题

  1.教学教材第88页例1。

  (1)出示例题,呈现问题情境。(PPT课件演示)

  (2)理解题意,叙述题目内容。

  ①用自己的话说一说题目的意思是什么?

  ②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。

  (3)收集信息,明确问题。

  ①提问:从题目中你获得了哪些数学信息?要求什么?

  ②思考:要求花坛的面积,其实就是求什么?

  ③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。

  (4)学生独立解答。

  (5)学生汇报,教师板书,规范书写。

  2.课堂练习。

  完成教材第89页练习十九第1题。

  (1)学生独立完成。

  (2)同桌互相说说自己是怎样做的。

  (3)全班集体交流:这个问题你是怎样算的?

  【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。

  (四)变式练习,内化提高

  1.基本练习。

  完成教材第89页练习十九第2题。(PPT课件演示)

  (1)学生独立完成。

  (2)同桌互相说一说自己是怎样算的。

  (3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。)

  参考答案:12 cm2;18.72 cm2;4.8 cm2。

  2.提高练习。

  完成教材第89页练习十九第4题。(PPT课件演示)

  (1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。)

  (2)学生独立完成。

  (3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积?

  3.拓展延伸。

  等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示)

  【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。

  (五)全课总结,畅谈收获

  1.今天这节课学习了什么?怎样学的?

  2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。

  (六)作业练习

  1.课堂作业:练习十九第5题。

  2.课外作业:练习十九第3题。

平行四边形的面积教学设计9

  教学目标:

  1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

  2、能正确地应用公式计算平行四边形的面积。

  教学重点:

  探索并掌握平行四边形面积计算公式。

  教学难点:

  理解平行四边形面积计算公式的推导过程,体会转化思想。

  教学准备:

  课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。

  教学过程:

  一、激趣引入

  1、创设情景

  师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)

  师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)

  师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)

  师:回忆一下,以前我们是用什么方法得出长方形的面积的。

  2、稳固复习

  师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。

  生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。

  师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?

  生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。

  师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)

  师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)

  师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)

  二、新知探究

  1、数方格

  师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?

  生:一格代表1m2,不到一格按半个计算。

  师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)

  2、推导公式

  师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)

  生:相邻两边相乘,或者底乘高。

  师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?

  生:面积变小了,但四条边都没有发生变化。

  师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)

  师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?

  生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

  师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?

  生:长方形。

  师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。

  (1)面积还相等吗?

  (2)转化后的长方形与原来的平行四边形有什么关系?

  (3)长方形的长、宽与平行四边形的底、高有什么关系?

  (4)怎么计算平行四边形的面积?

  生:沿着一条高切下来,不到另一边就变成了长方形。

  师:试着说说上面的四个问题。

  生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

  (生边说师边演示,并进行适当的引导)

  师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)

  师:还有其他的方法吗?

  生:演示方法。(课件演示两种方法)

  师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)

  师:平行四边形的面积大小是由()和()决定的。共同决定的'。

  3、回顾总结

  回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?

  三、练习巩固

  (一)基础练习

  1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

  2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)

  3判断:

  ①平行四边形的底是7米,高是4米,面积是28米。()

  ②a=5分米,h=2米,s=100平方分米。()

  ③平行四边形的底越长,面积就越大。()

  ④平行四边形的高越长,面积就越大。()

  4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。

  a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小

  5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。

  (二)拓展提升

  1、计算下面每个平行四边形的面积。

  2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  四、总结提示

  师:回忆一下,今天这节课有什么收获?

  总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

  板书设计平行四边形的面积

  数方格

  长方形的面积=长×宽

  计算平行四边形的面积=底×高(底高对应)

  s=ah

  割补法(转化)

平行四边形的面积教学设计10

  教学内容:苏教版第八册第42页“平行四边形面积的计算”

  教学目标:

  1、发现平行四边形面积的计算方法。

  2、能类推出平行四边形面积的计算公式。

  3、能准确进行平行四边形面积的计算。

  4、培养学生的动手操作、观察、分析、类推能力。

  5、渗透转化思想,培养学生的空间观念。

  教学重点:掌握平行四边形面积的计算公式,准确计算平行四边形面积。

  教学难点:平行四边形面积公式的推导过程。

  教学具准备:自剪平行四边形,作业纸,课件。

  教学过程:

  一、复习铺垫:

  1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答)

  2、再看第二个图形,面积是多少呢?你是怎样知道的?第三个呢?

  3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分)

  二、引导探索、揭示新知:

  1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的`底是多少?高是多少?(指名回答)

  有谁知道它的面积是多少?你怎么知道的?

  那不数方格,能不能也象计算长方形的面积那样,用一个公式来计算平行四边形的面积呢?

  这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算)

  2、实验操作

  (1)提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形)

  (2)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!

  (3)拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示)

  (4)为什么要沿高剪开呢?(因为长方形的四个角都是直角)

  3、演示:下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。

  第一步画:从平行四边形一个钝角的顶点向对边作高。

  第二步剪:沿高把平行边形剪成两部分。

  第三步移:把左边的直角三角形平行移动到右面边。也可以这样:沿平行四边形中间的任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。请大家把剪掉的部分还原,再平移一次。

  4、公式推导

  (1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系?

  根据回答板书:

  长方形的面积长宽

  平行四边形的面积底高

  (2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书

  同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。

  请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先…发现…因为…所以)指名说说推导过程。

  师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。

  5、教学字母公式

  如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成:

  s=a×h再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s=a.h或s=ah齐读一遍

  三、应用公式、尝试例题

  1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米?

  问:题目中要求的是什么形状物体的面积?告诉了什么条件?请试着做一做

  (1)指名板演(其余学生做在课堂练习本上)

  (2)集体评讲

  2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便?

  四、巩固练习

  同学们拿出你的平行四边形,根据你的数据,通过今天学习的知识来考考大家。(?~3名)

  五、全课总结

  通过这堂课的学习你有什么收获?

  师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。

  六、学到这儿,你有没有这方面知识的思考题来让大家动动脑?

  机动思考题:

  1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少?

  2、选择条件,用两种方法算出平行四边形的面积,看看是否相等?

平行四边形的面积教学设计11

  【教学内容】

  义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。

  【教学目标】

  1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。

  2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。

  3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。

  【教学重点】

  平行四边形面积的推导过程、平行四边形的面积公式。

  【教学难点】

  平行四边形到长方形的转化过程。

  【教学关键】

  长方形和平行四边形的对比。

  【教学方法】

  猜想,动手操作,转化。

  【知识基础】

  长方形面积公式的推导过程、长方形的面积。

  【教具准备】

  活动的长方形边框

  【辅助手段】 

  Ppt课件

  【教学过程】

  一、情境导入,揭示课题

  1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)

  (课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)

  我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。

  (板书课题)

  二、探究新知,操作实践

  (一)激发思维,寻求探究策略

  1、要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的`方法和大家分享?

  方法一:数方格

  方法二:将平行四边形转化为长方形

  2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)

  测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?

  3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)

  请同学们拿出学具,四人一小组研究研究。

  学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。

  方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。

  方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。

  无论哪种方法,我们都是把平行四边形转化成长方形。

  4、比较归纳,推导公式

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,

  提问:比较这两个图形,你发现了什么?(形状变了,大小没变)

  学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。

  这个长方形的长与平行四边形的底相等

  这个长方形的宽与平行四边形的高相等

  因为:长方形的面积=长×宽

  所以:平行四边形的面积=底×高

  学生汇报公式,教师板书。同学们在心里默默的记记。

  5、用字母表示公式

  如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?

  S=ah(学生说字母公式,师板书)

  (二)解决问题

  1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。

  用公式验证前面数方格的平等四边形的面积。

  平行四边形花坛的底是6m,高是4m,

  它的面积是多少?

  学生说,师板书

  (三)实际应用

  一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?

  学生自己解答。

  三、智力闯关

  这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。

  (一)有空就填

  1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。

  2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。

  3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。

  (二)明辨是非

  1、平行四边形的面积等于长方形的面积。()

  2、平行四边形的底边越长,它的面积就越大。()

  3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()

  3、6cm

  5cm

  4、5cm

  4cm

  4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()

  (三)鱼目混珠

  如图,你能计算出这个平行四边形的面积吗?

  四、课堂反思。

  1、学生谈收获。

  2、师生共同总结。

  五、拓展延伸。

  用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。

平行四边形的面积教学设计12

  一、 案例背景:

  执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。

  教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。

  二、教材简析:

  平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。

  三、教学诠释与研究。

  “ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。

  现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?

  如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的`编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:

  小黑板出示:

  师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?

  生:图1的面积是12平方厘米。

  师:你们是怎么想的?

  生1:我是一块块数的。

  生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。

  师:谁能很快知道图2这个图形的面积吗?

  生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。

  生2:把中间的一排往左推一格,所以还是12平方厘米。

  生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。

  师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?

  生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。

  生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。

  师:对于这个图形,我们用割补的方法能很快知道它的面积。

  接下来,小黑板出示:

  比较一下,图中的平行四边形的面积与长方形面积大小如何?

  生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。

  生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。

  师:把平行四边形割补成长方形,图形的什么变了,什么没有变?

  生:图形的形状变了,面积大小没有变。

  师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。

  反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。

  几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:

  师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?

  学生进行操作实践,加验证。

  师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?

  学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。

  学生演示时,师追问学生:是沿着哪一条线剪的?

  生:沿着平行四边形地高剪开的。

  师:为什么要沿着高剪?

  生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。

  师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?

  有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。

  全班交流自己的结果。

  生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。

  师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?

  生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。

  结合学生的回答,板书:

  长 方 形 面 积 = 长×宽

  平行四边形面积 = 底×高

  师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?

  生1:s=a×h

  生2:还可以用小圆点代替乘号。

  生3:还可以省略小圆点,写作:s=ah

  师:这节课,你们学到了什么?

  生:学会了计算平行四边形的面积。

  师:是怎么学会的呢?

  部分学生沉默,估计是学生不善于表达。

  师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?

  反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。

平行四边形的面积教学设计13

  一、教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

  2、能力目标:在剪一剪、拼一拼中开展空间观念;在想一想、看一看中初步感知“转化〞的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,开展推理能力。

  4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  二、教学重点、难点及关键点剖析:

  1、重点:平行四边形面积公式的推导及应用。

  2、难点:理解平行四边形面积计算公式的推导过程。

  三、教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、

  四、教学过程:

  一、创设情境,导入新课

  猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?

  生:算出这两块地的面积,比比就知道了。

  师:那长方形的面积怎么算呢?

  生:长方形的面积=长某宽

  师:平行四边形的面积怎么算呢?

  生摇摇头。

  师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。〔板书课题〕

  齐读学习目标:

  1、通过操作,能推导出平行四边形的面积计算公式。

  2、会运用平行四边形的`面积计算公式解决实际问题。

  二、自主学习

  在下面的方格纸上数一数,然后填写下表。〔一个方格代表1m2,不满一格的都按半格计算。〕

  小组讨论:〔1〕仔细观察、比拟表格中的数据,你发现了

  〔2〕猜测:平行四边形的面积=_________________________

  三、动手操作,验证猜测

  〔1〕小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)

  〔2〕以小组为单位进行剪拼。

  〔3〕指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。

  〔4〕讨论:

  A、平行四边形转化成长方形后面积变了吗?为什么?〔没有,因为它的大小没变〕,〔物体的外表或封闭图形的大小,叫做它们的面积〕

  B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。

  〔6〕交流汇报

  板书:长方形的面积=长某宽

  ↓ ↓ ↓

  平行四边形的面积=底某高

  师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a某h,也可以写成S=ah或S=ah〔师板书〕

  四、当堂检测

  1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

  出例如1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生独立完成,并展示学生作业。

  2、计算下面平行四边形面积,列式正确的选项是:〔〕

  A:8某3B:8某6C:4某6D:4某3

  通过做此题,你想提醒大家注意什么?

  3、你能想方法求出下面这个平行四边形的面积吗?

  五、拓展提升

  下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  通过做此题,你发现了什么?

  六、课堂小结

  说说本节课,你收获了什么?

  七、板书设计:

  平行四边形的面积

  长方形的面积=长某宽

  ↓ ↓ ↓

  平行四边形的面积=底某高

  S=a某h=ah =ah

平行四边形的面积教学设计14

  教学目标

  1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

  2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。

  3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。

  教学重点

  掌握并会用公式计算平形四边形的面积。

  教学难点

  利用转化的数学思想和方法来探索平形四边形面积公式

  教学教程:

  一、创设情境,引出问题

  同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)

  那长方形和正方形的面积与什么有关,怎么计算呢?(学生回答)

  平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)

  今天我们就来研究平行四边形的面积公式

  二、自主探究,动手操作

  1、出示要求

  把平行四边形的纸片剪一刀,然后拼成一个长方形。

  2、学生动手操作,教师深入学生当中观察指导

  3、汇报会交流。

  生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。

  生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。

  师:要拼成一个长方形要怎么做才能办到呢?

  生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。

  师:对,只要沿着平行四边形的一条高剪开,再平移就可以拼成一个长方形。

  4、议一议:平行四边形和拼出的长方形有什么关系呢?

  生1:拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。

  生2:拼成的平行四边形的面积和长方形的面积想等。

  师:那谁来总结一下平行四边形的面积公式。

  生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)

  5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。

  生:S=a×h

  过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。

  三、巩固训练,拓展延伸

  1、试一试,计算平行四边形的面积。让学生先说一说图上的数据都表示什么,再试着计算。

  2、练一练第1题。指名读题,独立完成。

  3、问题讨论。提出问题:下图中的.两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。

  生:两个图形的面积相等,因为它们的底一样,高也相等。

  生:平行四边形的面积等于底乘高,它们的底都是2、6,高都是1、8,所以面积相等。

  师:也就是说,等底等高的平行四边形的面积想等。

  四、课堂小结

  通过本节课的学习,你有哪些收获?

  五、布置作业

  1、完成57页第2、3题

  2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。

平行四边形的面积教学设计15

  教学内容:九年义务教育六年制小学数学第九册70页一72页。

  教学目的:

  1.使学生理解平行四边形面积计算公式的来源,能运用公式正确地计算平行四边形的面积,并会计算一些简单的有关平行四边形面积的实际问题。

  2.培养学生初步的逻辑思维能力和空间观念。

  3.结合教材渗透转化思想。

  教学重点:掌握和运用平行四边形面积计算公式。

  教学难点:平行四边形面积公式的推导过程。

  课前准备:投影器、长方形框架、平行四边形纸片等。

  教学过程:

  一、课前谈话:

  师:同学们,你们知道曹冲称象的故事吗?曹冲是怎样称出大象的重量的?

  曹冲真聪明,他把不好称的大象转化成了和它一样重量的石头,结果得到了大象的重量。你们想做曹冲这样聪明的人吗?

  二、创设生活情境

  这学期一开学我们学校的清洁区进行了重新划分,(课件出示花坛图)这是要分给五一班和五二班的清洁区。两个卫生区的面积一样吗?有什么好的判断方法吗?

  学生自由发言。

  师:长方形花坛的面积你们肯定会算,知道什么就可以了?平行四边形的面积会算吗?今天咱们就一起来探讨平行四边形的面积。(板书)

  三、探究新知

  1、自主探索

  出示一平行四边形纸片,这是一张平行四边形的纸片,想一想,你们有办法知道它的面积吗?也可以和组里的同学商量讨论,如果有需要的材料可以到我给大家准备的学具袋里去找一找,咱们比比看,哪个小组的同学最先知道这个平行四边形的面积!

  学生以小组为单位开展活动,教师巡视。

  汇报、反馈:都有结果了吧,哪个小组先来汇报?

  各小组派代表发言。

  2、对比分析

  每个小组都得到了这个平行四边形的面积,咱们一起来看看这些方法。课件展示学生的主要方法。

  3、归纳总结

  你们真聪明,能把没有学过的知识转化成学过的.知识,现在这个长方形的面积怎样求?它的长和宽与原来平行四边形的什么有关?

  想一想,这个长方形的面积其实就是谁的面积?由此你们知道怎样求平行四边形的面积了吧?谁来说一说?

  四、巩固运用

  咱们会计算了平行四边形的面积,接下来我们就到生活中去看看吧!

  1、(课件出示例题)这是五二班选的花坛的相关数据,现在能求出它的面积了吧?

  2、P82看第2题。

  3、课件出示:P83第题,这两个平行四边形的面积相等吗?为什么?

  五、小结:今天大家学得开心吗?你们都有哪些收获?

  出示一个长方形框架,这是什么形状?(再拉变形)现在变成什么了?想一想,这两个图形的面积相等吗?为什么

【平行四边形的面积教学设计】相关文章:

《平行四边形的面积》教学设计01-28

《平行四边形的面积》教学设计05-20

平行四边形的面积教学设计10-31

面积教学设计05-30

《平行四边形的面积》教学设计(热门)05-20

《平行四边形的面积》教学设计优秀07-26

平行四边形面积教学设计优秀12-19

圆的面积教学设计06-09

圆的面积教学设计【精选】09-27

圆的面积的教学设计09-29