分数的基本性质教学设计(推荐)
我要投稿 投诉建议

分数的基本性质教学设计

时间:2024-08-31 09:35:19 教学设计 我要投稿

分数的基本性质教学设计(推荐)

  作为一名为他人授业解惑的教育工作者,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。那么问题来了,教学设计应该怎么写?下面是小编整理的分数的基本性质教学设计,欢迎阅读,希望大家能够喜欢。

分数的基本性质教学设计(推荐)

分数的基本性质教学设计1

  一、教学目标

  1.经历探索分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、 教学重、难点

  教学重点是:分数的基本性质。

  教学难点是:对分数的基本性质的理解。

  三、教学方法

  采用了动手做一做、观察、比较、归纳和直观演示的方法

  四、教学过程

  (一)、故事引入,揭示课题

  1.教师讲故事。

  猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

  讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

  引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

  2.组织讨论。

  (1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。

  (3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=20xx。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了,

  分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  ( 二)、比较归纳,揭示规律

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。

  板书:

  (2)34是怎样变化成912的呢? 怎么填?学生回答后填空。

  (3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

  (4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都乘以

  相同的数)

  (5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的.大小不变。

  (板书:都除以)

  (6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

  (板书:零除外)

  (7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

  3.出示例2:把12和1024化成分母是12而大小不变的分数。

  思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  ( 三)、沟通说明,揭示联系

  通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  ( 四)、多层练习,巩固深化

  1.口答。(学生口答后,要求说出是怎样想的?)

  2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

  教学反思:

  学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

  1、学生在故事情境中大胆猜想。

  通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

  3、让学生在分层练习中巩固深化。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

  反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

分数的基本性质教学设计2

  1.教材简析

  《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。

  2.教材处理

  以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。

  设计意图:

  本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。

  1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。

  2、从故事情境中提出问题,体现数学来源于生活。

  3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。

  4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。

  5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、

  6、在游戏活动中对数学知识进行拓展运用。

  教学目标

  1.知识与技能

  (1)经历探索分数的基本性质的过程,理解分数的基本性质。

  (2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2.过程与方法

  (1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。

  (2) 培养学生的观察、比较、归纳、总结概括能力。

  (3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

  3.情感态度与价值观

  (1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

  (2)体验数学与日常生活密切相关。

  教学重点

  理解分数的基本性质

  教学难点

  能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

  教学准备

  师:电脑课件 学生:圆纸片 长方形纸

  教学步骤:

  一、故事引人,揭示课题。

  1.教师讲故事。

  话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”

  唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?

  [ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的.问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

  2、组织讨论,动手操作。

  (1)小组讨论,谁分的多

  (2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。

  (3)比较涂色部分的大小,有什么发现,得出什么结论。

  既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (4)教师演示

  3、教学例1

  (1)引导比较。

  师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

  你知道其中哪些分数是相等的吗?

  根据学生回答板书:1/3=2/6=3/9

  师追问:你是怎么知道这三个分数相等的?(图中观察出来的)

  (2)师演示验证大小。

  (3)完成“练一练”第1题

  学生先涂色表示已知分数,再在右图中涂出相等部分。

  完成填空后,说说怎么想的。

  4、教学例2。

  (1)组织操作。

  师:取出正方形纸,先对折,用涂色部分表示它的1/2。

  学生完成折纸、涂色。

  师问:你能通过继续对折,找出和1/2相等的其它分数吗?

  学生在小组中操作,教师巡视指导。

  学生展开折法并汇报,可能出现的方法有:

  连续对折两次,平均分成4份。如图:

  1/2=1/4

  ②连续对折三次,平均分成8份。如图:

  1/2=4/8

  ③连续对折四次,平均分成16份。

  师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?

  得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

  板书:1/2=2/4=4/8=8/16=16/32……

  (2)发现规律。

  师:你有什么发现?(如学生观察有困难,可进行以下提示)

  ①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?

  学生观察、思考,在小组中交流。

  师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?

分数的基本性质教学设计3

  教学内容:苏教版小学数学第十册第95页至97页。

  教学目标:

  知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

  情感目标:让学生在学习过程当中养成互相帮助、团结协作的良好品德。

  教学准备:圆形纸片、彩笔、各种卡片。

  教学过程:

  一、创设情境,激发兴趣

  孙悟空有3根一模一样的甘蔗,小猴子贝贝、佳佳、丁丁看见了,一哄而上,叫嚷着要吃甘蔗。孙悟空说: “好,贝贝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”贝贝、佳佳听了,连忙说:“孙大圣,不公平,我们要分得和丁丁的同样多。”孙悟空真的分得不公平吗?(学生思考片刻)

  【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】

  二、动手操作 、导入新课

  师:我们也来分分看。(学生拿出准备好的圆形纸片。)师:我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想要一块,而且大小要是第一块饼的一半,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?我现在想要两块,而且大小要跟刚才给我的饼一样大,你又能做到吗?用分数怎样表示呢?我如果想要四块,大小跟前两次给我的一样,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。

  【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

  三、观察对比, 由“数”变 “式”

  你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(==)(从这里你能看出,孙悟空分甘蔗,分得公平吗?)

  四、概括分析,由“式”变 “语”

  ⒈观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先研究分数的分子、分母是怎样变化的。

  ⒉先从左往右看,是怎样变为与它相等的的?

  (1)分母乘2,分子乘2。

  根据分数的意义,""表示把单位"1"平均分成2份,取其中的1份,而现在把单位"1"平均分成4份,也就是把原两份中的每一份又平均分成2份, 所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==

  即原来把单位"1"平均分成2份,取1份,现在把平均分的份数和取的`份数都扩大2倍,就得到。与的大小相等,分数值没变。

  (2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==

  (3)谁能用一句话说出这两个式子的变化规律?

  ⒊再从右往左看

  (1) 是怎样变化成与之相等的的?

  原来把单位"1"平均分成4份,取其中的2份,现在把同样的单位"1"平均分成2份,即把原来的每两份合并成 1份,现在要取得跟原来的同样多,只需取几份?[2÷2=1(份)]也就是现在把平均分的份数和取的份数都缩小了2倍,得到,分数的大小没有变。

  ==

  (2) 又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)

  ==

  (3)谁能用一句话说出这两个式子的变化规律?

  ⒋综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?

  ⒌这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。

  (1)理解概念。

  学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

  (2)瘃木鸟诊所。(请说出理由)

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )

  分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )

  ⒍小结。

  从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

  【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】

  五、巩固练习

  ⒈卡片练习:

  ⒉做P96“练一练”1、2。

  ⒊趣味游戏:

  数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。

  要求:第一排是分数值等于的,第二排是分数值等于的,还有一位同学是指挥,他是谁?你是怎样想的?

  【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

  七、布置作业

  做P97练习十八2。

分数的基本性质教学设计4

  教学目标:

  知识与技能:掌握分数的基本性质对于学生来说非常重要。分数的基本性质包括:分数的大小与分子、分母的关系,分数的化简和扩大,分数的比较大小等。通过学习分数的基本性质,可以帮助学生更好地理解和运用分数,提高他们的数学能力。同时,分数的基本性质与整数除法中商不变性质有着密切的关系,这也有助于学生对整数除法的理解和运用。在学习中,学生需要掌握如何将一个分数化简为分母相同而大小不变的分数。这需要学生观察比较分数的大小,抽象概括规律,并进行实际操作。通过这样的练习,可以培养学生的逻辑思维能力和数学解决问题的能力。因此,学生在学习分数的基本性质时,应注重理解概念,掌握方法,多进行练习,提高自己的数学素养。

  过程与方法

  在探索分数基本性质的过程中,我们体会到了数学思想方法中的“变与不变”以及“转化”的重要性。这个过程激发了我们的求知欲,也让我们体会到了数学思维的乐趣。通过互相交流和合作,我们不仅增进了对分数的理解,还培养了团队合作的意识。这种积极主动的学习态度将成为我们探索更多数学知识的动力,让我们更加享受数学带来的乐趣。

  教学重点

  理解和掌握分数的基本性质,会运用分数的基本性质。

  教学难点

  自主探究出分数的基本性质

  教学准备:

  PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

  教学流程:

一、故事导入激趣引思

  引言:好的,我来修改一下:大家是否能猜出刚刚老师播放的是哪首经典动画片的主题曲呢?没错,我们今天的学习将从中国古典名著《西游记》的故事开始。

  讲故事:唐僧师徒四人行至一村庄,路过一家饼铺,慈悲心化缘得到三块同样大小的饼。唐僧想着如何公平地分配这三块饼,便提出了一个方案:将第一块饼平均分成2份,让猪八戒吃其中的一半;将第二块饼平均分成4份,让沙和尚吃其中的一半;将第三块饼平均分成8份,悟空吃其中的一半。唐僧的提议引起了猪八戒的不满,他认为这样分配偏心,为什么悟空可以吃到一半,而他只能吃到一半。唐僧听了猪八戒的意见后,考虑了一下,觉得确实不太公平。于是,他重新想了一个更公平的分饼方案,让每个人都能公平地分享这三块饼。

  生发表见解。

  二、自主合作探索规律

  1、三个徒弟平均分得的饼一样多。我们来看一下这组分数等式:1/2=2/4=4/8。观察一下这些分数的分子和分母,它们是相同的吗?虽然分数的分子和分母不同,但它们的值却相等。再换个角度看,我们发现分数的分子和分母发生变化,但它们的比值保持不变。分数真是一种独特的数学形式呢!

  2、

  (1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

  (2)思考:在写分数的过程中你们发现了什么规律?

  组内商量一下然后开始行动!

  3、小组研究教师巡视

  4、全班汇报

  交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

  板书课题:分数的'基本性质打出幻灯

  5、反思规律看书对照找出关键词要求重读共同读

  6、当我们将3除以4得到的结果3/4,与12除以16得到的结果12/16进行比较时,我们发现它们是相等的。这说明了分数的一个基本性质:即分子和分母同时乘以(或除以)同一个非零数时,分数的值不变。这个性质也可以通过整数除法中商不变的性质来解释:在分数中,当分子和分母同时乘以(或除以)同一个非零数时,相当于整数除法中被除数和除数同时乘以(或除以)同一个非零数,商的值也不变。这再次强调了分数的基本性质,帮助我们更好地理解和运用分数的概念。

  三、自学例题运用规律

  过渡:同学们展现出了强大的学习能力,在接下来的学习中,老师希望你们能够自主学习课本96页的例2,并完成相应的练习。现在开始自主学习吧!祝你们学习顺利!

  生自学

  集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

  四、多层练习巩固深化

  1、判断对错并说明理由

  2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

  2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

  思考:分数的分母相同,能有什么作用?

  3、圈分数游戏圈出与1/2相等的分数

  4、对对碰与1/2,2/3,3/4生生组组师生互动

  五、课堂小结课堂作业

  结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

分数的基本性质教学设计5

  教学内容:人教版新课标教科书小学数学第十册75~77页例

  1、例2.教学目标:1知识与技能目标:

  (1)经历探索分数的基本性质的过程,理解分数的基本性质。

  (2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2、过程与方法目标:

  (1)经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质做出简要的、合理的说明。(2)培养学生的观察、比较、归纳、总结概括能力。

  (3)能根据解决的需要,收集有用的信息进行归纳,发展学生归纳、推理能力。

  3、情感态度与价值观目标:

  (1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)鼓励学生敢于发现问题,培养学生敢于解决问题的学习品质。

  教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。教学难点:自主探究、归纳概括分数的基本性质。教学准备:学生准备一张正方形的纸,课件教学过程:

  一、故事导入。

  师:同学们,你们喜欢看《喜羊羊与灰太狼》的动画片吗?生:喜欢。

  师:老师这里有一个慢羊羊分饼的故事,羊村的小羊最喜欢吃村长做得饼。一天,村子做了三块大小一样的饼分给小羊们吃,他把第一块饼的1/2分给懒羊羊,再把二块饼的2/4分给喜羊羊,最后把第三块饼的4/8分给美羊羊,懒羊羊不高兴地说:"村长不公平,他们的多,我的少。”(师边说边板书分数)同学们,村长公平吗?他们那个多,那个少?

  生:公平,其实他们分得一样多。

  师:到底你们的猜想是否正确呢?让我们来验证一下!

  二、探究新知,解决问题:1、小组合作,验证猜想:(1)玩一玩,比一比.(读要求)师:我们现在小组合作来玩一玩,比一比.(出示要求)

  师:(读要求)现在开始.(学生汇报)师:你们发现了什么?

  生1:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(师在分数上画符号)

  生2:老师,我们通过比较这三幅图的阴影部分完全重合,那这三个分数都相等。(出示课件演示)

  2、初步概括分数的基本性质.(2)算一算,找一找.师:(提问)同学们观察一下,这三个分母什么变了?什么没变?生1:它们的分子和分母变化了,但分数的大小没变。生2:它们的分子和分母变化了,但分数的大小没变。

  师:这三个分数的分子和分母都不相同,为什么分数的大小都相等呢?同学们思考一下。

  生1:它们的分子和分母都乘相同的数。生2:它们的分子和分母都除以相同的数。

  师:那同学们的猜想是否正确呢?它们的变化规律又是怎样呢?我们小组合作观察讨论。并把发现的规律写下来。

  (出示课件)

  小组汇报:(归纳规律)

  师:哪一组把你们讨论的结果汇报一下,从左往右观察,你们发现了什么?生1:从左往右观察,我们发现1/2的分子和分母同时乘2,分数的大小不变。生2:从左往右观察,我们发现1/2的分子和分母同时除以4,分数的大小不变。师:你们是这样想的,既然这样,那么分子和分母同时乘5,分数的的大小改变,吗?生:不变。

  师:同时乘

  6.8呢?生:不变。

  师:那你们能不能根据这个式子来总结一下规律呢?

  生1:一个分数的分子和分母同时乘相同的`数,分数的大小不变。生2:一个分数的分子和分母同时乘相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生:......

  师:这样的例子,我们可以举很多,刚才我们是从左往右观察,从右往左观察,哪一组汇报一下。

  生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。

  生:从右往左观察,我们发现了,4/8的分子和分母同时除以2,得到了2/4,分数2/4的分子和分母同时除以2得到分数1/2,他们的分数的大小不变。(师课件演示)

  师:你们是这样想的,既然这样,那么分子和分母同时除以5,分数的的大小改变,吗?生:不变。

  师:同时除以

  6.8呢?生:不变。

  师:那你们能不能根据这个式子来总结一下规律呢?

  生1:一个分数的分子和分母同时除以相同的数,分数的大小不变。生2:一个分数的分子和分母同时除以相同的数,分数的大小不变。师:(板书)谁来举这样一个例子?生举例

  3、强调规律

  师:我把两句话合成了一句话,根据分数的这一变化规律,你认为下面的式子对吗?(课件出示)

  生:回答,错的,因为分数的分子、分母没有乘相同的数。师:(在黑板上圈出)对必须乘相同的数。

  生:错,因为分子乘2,分母没有乘2,分子和分母没有同时乘。师:(在黑板上圈出)对必须同时乘。

  师:分数的分子、分母都乘或除以相同的数,分数的大小不变,这里“相同的数”是不是任何数都可以呢?我们看一看(课件出示)师:这个式子成立吗?

  生:不成立,因为0不能做除数,4乘0得0是分母,分母相当于除数,所以这个式子是错误的。

  师:我不乘0,我除以0可以么?生:不成立,因为0不能作除数。

  师:同学们不错,这两个式子都不成立,我们刚才总结的分子、分母同时乘或除以相同的数,这相同的数必须(生:0除外)(师板书)

  师:这一变化规律就是我们这节课学习的内容,分数的基本性质,(板书课题)在这一规律里,需要我们注意的是:(生:同时、相同的数、0除外)

  师:我相信懒羊羊学习了分数的基本性质,那就不会生气了它知道(出示课件)一样多,咱们同学们千万不要犯它同样的错误了,我们把这一条规律读两遍,并记下它。(生读规律)

  师:学习了分数的基本性质,我想利用你们的火眼金睛,当一当小法官(出示课件)

  生:(读题,用手势表示对、错,并说出原因)

  三、运用规律,自学例题1、学习例2师:这个分数的基本性质特别的有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数,我们一起去看一看。(课件出示例题)学生读题

  师:分子、分母应该怎样变化?变化的依据是什么?小组内讨论一下(学生讨论)师:谁来说一说?

  生:2/3的分子分母同时乘4得到8/12,变化的依据是分数的基本性质。生:10/24的分子和分母同时除以2,得到5/12,变化的依据是分数的基本性质。师:回答得不错,自己独立完成这题。

  师:(巡视)请一名学生说出答案,(生说,师出示答案)

  四、分数的基本性质与商不变的性质

  师:分数的基本性质作用可大了,那大家回想一下,这与我们以前学习的除法里面哪一个性质相似?生:商不变的性质。

  师:除法里商不变的性质是怎么说的?

  生:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:你们能否用商不变的性质来说明分数的基本性质?小组内讨论一下。

  小组讨论

  师:哪一组把讨论的结果汇报一下。

  生:在分数里,被除数相当于分子,除数相当与分母,被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时乘或除以相同的数(0除外),因此,商不变就相当于分数的大小不变。(师板书)

  师:既然能用商不变的性质来说一说分数的基本性质,那我们来小试牛刀。(出示课件)

  生:5除以10等于1/2,当被除数5缩小5倍就相当于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,当除数24除以3得8就相当于分母除以3,分母除以3分子也除以3,12除以3得4.五、课堂运用。1、跨栏高手

  师:同学们的回答简直太棒了,那你们有资格让老师把你们带到运动场去当跨栏高手了。(出示课件)

  师:(学生回答三题)同学们这么大的数一下子就得出结果,有什么秘诀吗?生:用大数除以小数,就知道分母、分子扩大了几倍.2、拓展延伸:

  师:当了跨栏高手,我们的成绩非常的好,那我们就到羊村去玩吧,来到羊村,慢羊羊让大家当村长,解决难题,你们敢接招吗?生:敢

  师:(出示课件)那我们就要小组为单位,开始玩游戏。小组汇报结果

  六、捡拾硕果

  看到同学们这么自信的回答,老师知道今天大家的收获不少,说一说这节课你都收获了哪些?生说

  师:同学们,表现得太好了,这节课,老师从你们的身上也学到了许多,谢谢你们,下课!

分数的基本性质教学设计6

  一、教学目标

  1.经历探索分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、教学重、难点

  教学重点是:分数的基本性质。

  教学难点是:对分数的基本性质的理解。

  三、教学方法

  采用了动手做一做、观察、比较、归纳和直观演示的方法

  四、教学过程

  (一)、故事引入,揭示课题

  1.教师讲故事。

  猴山上的猴子们最喜欢吃猴王做的香蕉饼了。有一天,猴王做了三块大小一样的香蕉饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友们,你知道哪只猴子分得多吗?

  讨论:三只猴子一起分到了三块大小一样的香蕉,它们都觉得自己分得的最多。经过仔细观察和比较,发现其实每只猴子分得的香蕉数量都是一样的。

  引导:聪明的猴王想出了一个聪明的办法来满足小猴子们的要求并且公平分配食物。他决定让每只小猴子依次从一堆食物中取一份,直到食物被取完为止。这样每只小猴子都有机会先后选择食物,确保了公平分配。这个方法既满足了小猴子们的要求,又让他们学会了合理分享。

  2.组织讨论。

  (1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等的。也就是说,三只猴子分得的饼的分数是14、28和312,它们之间是相等的关系。虽然它们平均分的份数和表示的份数不同,但是它们的大小是相等的。

  (2)猴王将三块大小一样的饼分给小猴子一部分后,剩下的部分大小是否相等呢?你还能找出另一组相等的分法吗?通过仔细观察我们可以发现:2/3=4/6=6/9。

  (3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并简化分数。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了,分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  (二)、比较归纳,揭示规律

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。

  板书:

  (2)34是怎样变化成912的呢?怎么填?学生回答后填空。

  (3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

  (4)学生们对几组分数进行了观察,发现分子和分母的变化规律是同时乘以相同的数。经过归纳总结,他们得出结论:分数的分子和分母都乘以相同的'数,分数的大小不变。

  (板书:都乘以

  相同的数)

  (5)分数的分子和分母之间存在一个共同的因数,当分子和分母同时除以这个因数时,得到的新分数与原分数大小相同。

  (板书:都除以)

  (6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

  (板书:零除外)

  (7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

  3.出示例2:把12和1024化成分母是12而大小不变的分数。

  思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  (三)、沟通说明,揭示联系

  通过举例,分数的基本性质与商不变性质之间有密切的联系。在分数中,分子和分母之间存在着除数与商的关系,分子除以分母就得到分数的值。当我们进行分数的乘除运算时,商不变性质起着重要作用。商不变性质指的是在乘除运算中,如果被乘数或被除数同时乘(除)以(除以)一个相同的数,那么乘积(商)不变。举例来说,如果我们有一个分数$frac{a}{b}$,其中$a$和$b$分别是整数,那么当我们将分子和分母同时乘以相同的数$c$,得到的新分数为$frac{ac}{bc}$。根据商不变性质,这两个分数是等价的,即它们代表同一个数值。这说明分数的基本性质中的分子和分母可以同时乘以一个相同的数,不改变分数的值。因此,分数的基本性质与商不变性质共同构成了分数运算中的重要规律。在进行分数的乘除运算时,我们可以利用商不变性质来简化计算,保证结果的准确性。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  (四)、多层练习,巩固深化

  1.口答。(学生口答后,要求说出是怎样想的?)

  2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

  教学反思:

  学生是学习的主体,教师是引导和组织学习的助手。在数学课堂上,教师的作用是激发学生的学习兴趣,引导他们积极参与到数学学习中来。为了实现这一目标,教师需要深入了解学习方法,建立起一种以探究为核心的学习模式。教师应该激发学生的学习动力,为他们创造充分的学习机会,帮助他们通过自主观察、讨论、合作、探究来真正理解和掌握数学知识和技能,充分发挥学生的主动性和创造性。一个重要的特点是设计学习方法,从大胆猜想、实验感知、观察讨论到总结归纳,都是为了促进学生自主探究和合作学习而设计的。

  1、学生在故事情境中大胆猜想。

  通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

  3、让学生在分层练习中巩固深化。

  在练习的设计上,我们需要确保题目紧扣重点,设计新颖、多样,难度层次递进。首先,前两题作为基础练习,旨在帮助学生理解概念,全面了解他们对新知识的掌握情况。第三题则是在前两题基础上,巩固练习,加深对所学知识的理解。最后一题通过游戏形式,旨在加深学生对分数基本性质的认识,激发学生学习兴趣,活跃课堂气氛。这样设计不仅能照顾到学生的思维发展过程,同时也能拓宽学生的思维空间,真正做到学以致用。

  在教学过程中,我们应该注重引导学生进行多种方法的验证,而不仅仅局限于老师提供的几种方法。数学教学的目的不是仅仅教会学生问题的答案,更重要的是教会他们思考问题的方法和途径。因此,当让学生验证结论的正确性时,应该给予他们更大的自由度,让他们自己去寻找多种途径进行验证。这样不仅可以激发学生的求知欲和探索欲,也有助于培养他们的创新能力和解决问题的能力。

分数的基本性质教学设计7

  【教材依据】

  《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。

  【设计理念】

  根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。

  【学情与教材分析】

  《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。

  【教学目标】

  1、经历探索分数基本性质的过程,理解分数的基本性质。

  2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

  3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

  【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

  【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

  【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。

  【教学过程】

  一、创设情境,激趣导入

  师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?

  生1:四、五、六年级分的地一样多。

  生2:……

  师:到底校长分的公平不公平,我们来做个实验吧?

  二、动手操作,探究新知

  1,小组合作,实验探究。

  师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

  2,汇报结果

  师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

  生1:用三张同样的长方形的'纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

  生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

  生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

  生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

  生5:……

  3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

  (设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

  4、探索分数的基本性质。

  师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?

  生:相等。

  师:同学们请看这组分数有什么特点?(板书=)

  生:分数的分子分母发生了变化分数的大小不变。

  师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?

  生:分子分母同时乘2,……

  师:谁能用一句换来描述一下这个规律?

  生:给分数的分子分母同时乘相同的数。(师随着板书)

  师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

  生:分数的分子分母同时除以相同的数。

  师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

  师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

  生:0除外。

  师:为什么0要除外?

  生:因为分数的分母不能为0.

  师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

  生:同时相同0除外

  师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

  生:商不变的性质。

  师:为什么?

  生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

  师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

  三:应用新知,练习巩固。

  (一)练一练

  (二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

  (二)判断(抢答)

  1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

  2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

  3、给分数的分子加上4,要是分数的大小,分母也要加上4。

  (四)测一测

  1、把和都化成分母是10而大小不变的分数。

  2、把和都化成分子是4而大小不变的分数。

  3、的分子增加2,要是分数大小不变,分母应增加几?

  四:总结。

  1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

  2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

  五:作业练习册2、4题

  【板书设计】

  分数的基本性质

  给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

  【教学反思】

  本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

  这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

  本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

  在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

分数的基本性质教学设计8

  一、教学目标

  1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

  2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

  3、激发学生积极主动的情感状态,体验互相合作的乐趣。

  二、教学重点

  1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

  2、自主探究出分数的基本性质。

  三、教学准备

  课件、正方形的纸

  四、教学设计过程

  (一)迁移旧知.提出猜想

  1、回忆旧知

  根据“288÷24=12”填空

  28.8÷2.4=

  2880÷240=

  2.88÷0.24=

  0.288÷()=12

  被除数÷除数=()

  说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

  被除数和除数同时乘或除以相同的数(零除外),商不变。

  2、提出猜想

  既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的'性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

  (二)验证猜想,建构新知

  1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

  2、出示学习提示。

  学习提示

  A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

  B、验证结束后,把你的验证方法和结论与小组同学交流。

  3、汇报交流

  指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

  C、总结规律

  1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

  2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

  3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

  如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  师:为什么要0除外?

  师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

  教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

  师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

  D教学例2

  把2/3和10/24都化为分母为12而大小不变的分数。

  学生独立完成,集体订正。

  (三)练习升华

  1、填空

  2、下面算式对吗?如果有错,错在哪里?

  3、把相等的分数写在同一个圈里。

  4、老师给出一个分数,同学们迅速说出和它相等的分数。

  (四)作业

  教材59页第9题。

  (五)思维拓展

  (六)总结延伸

  师:这节课你有什么收获?

  六、板书设计

  分数基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质教学设计9

  教学目标:

  结合趣味故事经历认识分数的基本性质的过程。

  初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

  经历观察、操作和讨论等学习活动,体验数学学习的乐趣

  教学重点:理解掌握分数的基本性质。

  教学难点:归纳分数的性质。

  学生准备:长方形纸片。

  一、创设故事情境,激发学生学习兴趣并揭示课题。

  编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?

  让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。

  二、小组合作,探究新知:

  1、动手操作、形象感知

  出示课件,让学生观察讨论图中分数的涂色部分是多少?

  A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?

  B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?

  C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。

  2、观察比较、探究规律

  (1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。

  (2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

  (3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题

  (4)通过从左到右的观察、比较、分析,你发现了什么?

  使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。

  【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】

  3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?

  观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:

  先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?

  4、归纳规律

  提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?

  学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”

  6、小结

  同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

  【通过小结,既对整个课堂学习的.内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】

  四、巩固强化,拓展应用

  多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。

  五、游戏找朋友。

  六、布置作业:

  在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。

分数的基本性质教学设计10

  教学内容:人教版小学数学第十册第75页至78页。

  教学目标:

  1、分数是数学中常见的表示形式,它由分子和分母组成,可以表示部分和整体之间的关系。学生在学习分数时,需要掌握分数的基本性质,比如分子和分母可以同时乘以一个非零数,来得到一个等价的分数。这样做不会改变分数的大小,只是改变了分数的形式。这个性质在简化分数、比较分数大小等问题中非常有用。

  2、培养学生的观察能力、动手操作能力和分析概括能力等。

  3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:

  课件、长方形纸片、彩笔。

  教学过程:

 一、创设情境,忆旧引新

  悟空师徒四人来到一个小国家——算术王国,猪八戒饥肠辘辘,悟空便对他说:“我给你10块馒头,平均分2天吃完,怎么样?”八戒闻言大怒:“太少了,你这猴子欺负我!”悟空眯起眼睛说:“那我就给你100块馒头,平均分20天吃完,可以了吧。”八戒听后大喜:“太好了!太好了!这下每天我可以多吃点了!”

  同学们,你们认为八戒说得有道理吗?(没道理)

  很久很久以前,在一个神秘的森林里,一只小松鼠和一只小松鼠精灵相遇了。小松鼠问道:“你是谁?为什么看起来和我这么像?”小松鼠精灵神秘地笑着说:“或许我们有着某种特殊的联系,但这个谜团需要我们一起去解开……”

  为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

  先算出商,再观察,你发现了什么?

  被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

  8÷15=? 3÷20=?? 14÷27=

  二、动手操作 、导入新课

  同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)

  我们把三张纸片比喻成三块饼,大家一起比较,每人的三块饼大小是相同的吗?请拿出第一块饼,我想与你每人一块,确保它们大小一样,你能做到吗?你给我的那块饼为什么是这块饼的一半呢?用分数怎么表示呢?

  我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

  当我们想要平均分配四块给你和我时,你觉得这种分配方式可行吗?用分数来表示这种分配又是怎样的呢?这三个分数的大小是否相等呢?为什么呢?在本节课中,我们将一起探讨这个数学问题。

  这里是一个小故事:小明手里拿着三根不同长度的绳子,他想知道这三根绳子的长度是否相等。于是,他将三根绳子分别放在桌子上比较。经过比较后,小明发现这三根绳子看起来似乎长度相等。这让小明感到很惊讶,他开始思考为什么这三根绳子的长度看起来一样。这个问题困扰着小明,他决定继续探究原因。

  三、探索分数的'基本性质

  你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?

  1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?

  2、学生交流、讨论并 汇报 ,得出初步分数的基本性质。

  分数的分子、分母同时乘以或除以相同的数,分数的大小不变。

  3、将结论应用到

  (1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

  (2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

  (3)是怎样变化成与之相等的 的?

  (4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

  4、当两个数相乘或相除时,其中一个数增大,另一个数减小,结果会更接近前者。不过,不能同时乘或除以0,因为0不能作为除数。

  5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

  四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

  有一位父亲将一块土地留给了他的三个儿子。大儿子认为这块土地是他的,二儿子认为这块土地是他的,三儿子也认为这块土地是他的。大儿子和二儿子觉得自己吃亏了,于是他们开始争吵。这时,阿凡提路过,询问了争吵的原因后,他笑了笑,给了他们一些建议,三兄弟因此停止了争吵。

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

  分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。

  ⒍小结。

  从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

  学生通过观察和比较发现,当分子和分母同时扩大或缩小相同的倍数时,所得的分数的大小并不会改变。这说明分数的大小取决于分子和分母的比例关系,只有在同向、同倍变化的情况下,分数的大小才能保持不变。这一规律也适用于其他分数,只要分子与分母按相同的比例变化,所得的分数大小仍然保持不变。因此,我们可以得出分数的基本性质:分子与分母是同时变化的,是同向变化的,是同倍变化的。

  五、巩固练习

  ⒈卡片练习:

  ⒉做P96“练一练”1、2。

  ⒊趣味游戏:

  数学王国即将举办一场音乐会,分数大家族的节目是女声大合唱,演出时间紧迫,需要大家快速帮助合唱队的成员按照要求排好队伍。请尽快协助整理队伍,谢谢!

  要求:第一排是所有同学的分数值等于,第二排是所有同学的分数值等于,还有一位同学是指挥,他是小明。我选择小明作为指挥是因为他在团队合作中展现出了出色的领导能力和组织能力,能够有效地协调大家的行动,确保任务顺利完成。

  【通过练习,分数是数学中的一个重要概念,可以表示一个整体被等分成若干份的情况。分数由分子和分母组成,分子表示被等分的部分数量,分母表示整体被等分的份数。分数可以用来表示部分与整体之间的关系,比如$frac{1}{2}$表示一个整体被等分成两份中的一份。在分数的运算中,我们需要掌握分数的基本性质,比如分数的大小比较、分数的化简、分数的四则运算等。对分数的基本性质有深刻的理解可以帮助我们更好地应用分数解决实际问题。

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

  七、布置作业

  做P97练习十八2。

分数的基本性质教学设计11

  教学要求

  ①分数是数学中的一种特殊表示形式,用来表示一个整体被分成若干等份中的一部分。分数有一些基本性质,比如分数的大小与分子成正比,分母成反比,即分子越大,分数越大;分母越大,分数越小。另外,分数可以化简为最简形式,即分子与分母没有共同的因数。当我们需要比较或运算不同分母的分数时,可以通过找到它们的最小公倍数,将分数化为相同分母的形式,从而方便比较大小或进行运算。

  ②培养学生观察、分析和抽象概括能力。

  ③渗透“事物之间是相互联系”的辩证唯物主义观点。

  教学重点理解分数的基本性质。

  教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

  教学过程

一、创设情境

  1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:

  (1)商不变的性质是什么?

  (2)分数与除法的关系是什么?

  3.填空。

  1÷2=(1×2)÷(2×2)==。

  二、揭示课题

  分数除法中是否存在商不变的性质,让我们一起来探索吧!你认为在分数中会不会存在类似的性质呢?这个性质会是什么呢?让我们一起大胆猜测吧!

  随着学生的回答,教师板书课题:分数的基本性质。

  三、探索研究

  1.动手操作,验证性质。

  (1)请拿出三张同样大小的长方形纸条,将它们分别平均分成2份、4份、6份,并分别用不同颜色涂抹其中的1份、2份、3份。请用分数形式表示每张纸条上被涂色的部分。

  (2)观察比较后引导学生得出:==

  (3)从左往右看:==

  由变成,平均分的.份数和表示的份数有什么变化?

  把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

  把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  (4)从右往左看:==

  引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

  (6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

  2.分数的基本性质与商不变的性质的比较。

  在除法里有商不变的性质,在分数里有分数的基本性质。

  想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3.学习把分数化成指定分母而大小不变的分数。

  (1)出示例2,帮助学生理解题意。

  (2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

  (3)让学生在书上填空,请一名学生口答。

  4.练习。教材第108页的做一做。

  四、课堂实践。

  练习二十三的1、3题。

  五、课堂小结

  1.这节课我们学习了什么内容?

  2.什么是分数的基本性质?

  六、课堂作业

  练习二十三的第2题。

  七、思考练习

  练习二十三的第10题。

  教学反思:

  “分数的基本性质”是小学五年级下册数学教材的重要内容,它是约分、通分的基础,对于学习比的基本性质也具有重要意义。因此,分数的基本性质是本单元的重点课程。在这节课上,我将采用“猜想和验证”的教学方法,为学生留出充分的探索时间和广阔的思维空间,让他们在实践中掌握知识,培养数学思维。通过这样的教学方式,不仅使学生掌握了数学基本知识,更重要的是激发了他们学习的主动性,培养了他们解决实际问题的能力。这样的教学目的在于培养学生学会学习、学会思考、学会创造,从而使他们能够运用数学的思维方式解决未来生活中遇到的各种问题,这也是学生必备的基本素质。

  这节课是在学生已经掌握了商的不变性质,并具有一定应用经验的基础上进行的。在这节课中,我设计了一些新的挑战和问题,帮助学生深入理解商的不变性质,并在实际问题中灵活运用所学知识。通过这种方式,学生可以提高对商的理解和运用能力,为他们进一步学习和应用商的相关知识打下坚实的基础。

  1、商不变的性质与除法、分数的关系密切相关,商不变意味着在一定条件下商的值保持不变。在商不变的基础上,我们可以猜想分数的基本性质是什么?请同学们根据商不变的性质大胆猜想一下,分数的基本性质是什么?并且说出你们的想法。

  2、让学生在折纸游戏中充分发挥主体作用,通过操作、观察、比较来验证自己的猜想。可以让他们尝试不同的折法,观察折叠后的形状和颜色变化,并用不同的颜色表示不同的分数,培养他们的动手能力和观察解决问题的能力。

  3、设计练习时要考虑到知识的转化能力,因此练习的设计应该具有典型性、多样性、深度和灵活性。首先,通过基础练习深化对分数基本性质的理解,包括分子、分母、约分、通分等方面。然后,在学完整个知识点后,进行综合练习,巩固知识,提高能力。在练习中注重应用拓展,让学生能够将所学知识应用到实际问题中,培养他们解决问题的能力。

分数的基本性质教学设计12

  教学内容:

  苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。

  预设目标:

  1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。

  2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。

  教学重点:

  探索、发现、归纳和理解分数的基本性质。

  教学过程:

  一、导入

  猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。

  二、学习新知

  1、提供例证

  (1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?

  板书:1/3=2/6=3/9(得出三个相等的分数)

  (2)学生折纸找与1/2相等的分数。

  你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?

  展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16

  2、诱导探索

  提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?

  3、探究新知

  (1)独立思考或小组交流。

  (2)探究验证。

  你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?

  教师根据学生的回答进行板书。

  4、揭示结论:出示分数的基本性质的内容,并揭示课题。

  5、深究结论:

  (1)在分数的基本性质中,你认为哪些字词比较重要,为什么?

  (2)齐读并理解记忆分数的基本性质。

  三、多层练习

  1、填一填。(在○里填运算符号,在□里填数或字母)。

  4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14

  5/8=5○□/8○67/12=7○□/12○□

  2、判断。

  3/4=3+4/4+4()12/15=12÷n/15÷n()

  5/25=5×5/25÷5()5/6=25/30()

  四、课堂作业:

  1、第62页“练一练”2。

  2、第63页第3题。

  3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?

  反思

  “分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,

  从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:

  1、通过商不变的性质、除法与分数的'关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。

  3、让学生在多层练习中巩固深化。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

  反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

分数的基本性质教学设计13

  教学目标:

  1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

  学习目标:

  1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数

  重点难点:

  1、使学生理解分数的基本性质。

  2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  过程设计:

  一、激情导入

  1、导入课题

  生读故事。

  唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?

  师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?

  2、明确目标

  理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。

  3、预期效果

  达到教学目标

  二、民主导学

  任务一

  任务呈现

  动手操作验证性质

  自主学习

  师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求

  1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

  2、仔细观察三张纸的涂色部份,你们能发现什么?

  师:同位分工合作完成。现在开始。

  师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

  请二至三位同学说一说。

  师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?

  生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

  师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)

  下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

  生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

  请二名同学重复。

  师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

  生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

  请一至二名同学回答。

  师板书:分数的分子分母同时乘相同的数,分数的大小不变。

  师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

  师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

  请一同学回答,

  生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的.分子与分母同时除以2得到了二分之一。

  师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

  生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)

  师板书:或者除以

  师:你能根据刚才总结的规律举一个例子吗?

  让三名学生举出例子,师板书。并问:分子分母同时除以了几?

  展示交流

  师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)

  生:不成立,

  师:为什么

  生:因为0不能作除数,

  师:0不能作除数,所以这个式子是错误的。(画叉)

  师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)

  生:不成立,因为在分数当中分母相当于除数,除数不能为0。

  师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话

  生:0除外

  师板书0除外

  师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

  生:同时和相同的数

  师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)

  师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

  生齐读二遍。

  师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

  任务二

  任务呈现

  课本76页的例2,请一同学读题。

  自主学习

  生独立完成,完成后和同位的同学说一说你是怎样想的。

  展示交流

  每题请二名同学回答,(集体订正答案)

  检测导结

  1、目标练习

  76页“做一做”

  练习十四的1、2、6、7题

  2、结果反馈

  生做完后同桌交流,再指名说说结果。

  3、反思总结

  今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

  三、辅助设计

  教具课件设计

  小黑板正方形纸数块

  板书设计

  分数的基本性质

  练习和作业设计

  1、完成课本76页做一做中的1、2题。

  生独立完成,师指名回答。

  2、完成练习十四中的1、2、5、6、7题。

  师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

分数的基本性质教学设计14

  教学目标

  1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。

  2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。

  教学重、难点:

  理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。

  教学过程:

  一、复习旧知,了解学习起点

  二、创设情境,激趣引入

  课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?

  三、探究新知,揭示规律

  1.动手操作,形象感知。

  (1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。

  (2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。

  (3)剪。把圆中的阴影部分剪下来。

  (4)比。把剪下的阴影部分重叠,比一比结果怎样。

  2.观察比较,探究规律。

  (1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书。)

  (2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。

  学生汇报后,教师用电脑演示。

  把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”

  (3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)

  (4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的.要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)

  (5)这3个分数的分子、分母都不同,为什么分数的大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)

  讨论题:

  ①它们之间有什么关系?它们的什么变了?什么没有变?

  ②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?

  (6)学生汇报,师生讨论情况。

  师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。

  师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)

  从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,,得出:分数的分子和分母都除以相同的数,分数的大小不变。

  (7)抓住焦点,辨中求真。

  的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。

分数的基本性质教学设计15

  教学目标:

  情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。

  知识技能:理解分数的基本性质,并且能够灵活应用。

  过程方法:动手操作、观察、讨论

  教学重、难点:理解并掌握分数的基本性质并灵活应用。

  教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。

  学具准备:拼图12组。

  教学设计理念:

  《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。

  教学过程:

  一、 创设情境,激趣导入。

  设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的'兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。

  师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。

  请看拼图要求:1、用所给材料拼成三个完全一样图形。

  2、用分数表示阴影部分占整幅图的几分之几,并写出来。

  二、合作交流,探究规律。

  设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。

  (一)拼图,写分数。

  (1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。

  (2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。( = = )

  (二)找分数间的大小关系。

  (1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。

  (2)汇报:每组中三个分数大小相等。

  比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……

  (三)探究规律

  (1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。

  (2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……

  (3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。

  (4)师结合图依据分数的意义讲解变化规律。

  (5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?

  (四)对比分数的基本性质和商不变的性质。

  学生对比,说出两个性质间的区别与联系。

  三、应用。

  设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。

  1、填空

  (1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。

  2、比较 和 的大小。

  四、游戏"找朋友”。

  设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。

  同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。

  ,五年级数学分数的基本性质教学设计

【分数的基本性质教学设计】相关文章:

分数的基本性质教学设计08-11

分数的基本性质教学设计05-30

《分数的基本性质》教学设计优秀05-09

分数的基本性质教学设计15篇06-25

分数的基本性质教学设计15篇(优)08-11

(优)分数的基本性质教学设计15篇08-25

[精品]分数的基本性质教学设计15篇08-25

分数的基本性质教学设计锦集(15篇)08-11

比的基本性质教学设计06-27