不等式证明_证明书
发布时间:2017-04-07 编辑:admin
手机版
不等式证明
不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。
一、不等式的初等证明方法
1.综合法:由因导果。
2.分析法:执果索因。基本步骤:要证..只需证..,只需证..
(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。
3.反证法:正难则反。
4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:
(1)添加或舍去一些项,如:
2)利用基本不等式,如:
(3)将分子或分母放大(或缩小):
5.换元法:换元的目的就是减少不等式中变量,以使问题
化难为易、化繁为简,常用的换元有三角换元和代数换元。
6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。
7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。
8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。
9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。
10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当 a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当 a<0时,f(x)>0(或< 0).△>0(或< 0)。
二、部分方法的例题
1.换元法
换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。
注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。
2.放缩法
欲证 A≥B,可将 B适当放大,即 B1≥B,只需证明 A≥B1。相反,将 A适当缩小,即 A≥A1,只需证明 A1≥B即可。
注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。
3.几何法
数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。
上一篇:放缩法证明不等式_证明书
下一篇:不等式的证明_证明书
相关推荐
- 放缩法证明不等式_证明书04-07
- 均值不等式证明_证明书04-07
- 切比雪夫不等式证明_证明书04-06
- 不等式证明_证明书04-07
- 不等式的证明_证明书04-07
- 不等式证明练习题_证明书04-07
- 不等式的证明ppt_证明书06-30
- 09-30
精彩抢先看New Top
1
2017街道节前安全生产大检查简报范文2
2017社区节前安全生产检查简报3
2017年春节前安全检查简报4
关于2017任前廉政对照检查材料范文5
2017苏荣案警示教育专题民主生活会发言6
2017年个人前任廉政对照检查材料7
苏荣案警示教育专题民主生活会个人发言8
2017任前廉政对照检查材料
最热文章榜Hot Top
1
组织生活方面存在的问题及整改措施2
2016个人政治纪律和政治规矩方面存在的3
个人组织生活方面存在的问题及整改措施4
党员干部落实全面从严治党责任方面存在5
当前落实全面从严治党责任方面存在的问6
个人担当作为方面存在的问题及整改措施7
关于在品德合格方面存在的问题及整改措8
2017年春节韵达快递放假时间通知