一次函数说课稿范文(通用10篇)
我要投稿 投诉建议

一次函数说课稿

时间:2024-10-20 10:09:40 毅霖 说课稿 我要投稿

一次函数说课稿范文(通用10篇)

  作为一位不辞辛劳的人民教师,编写说课稿是必不可少的,说课稿有利于教学水平的提高,有助于教研活动的开展。那么大家知道正规的说课稿是怎么写的吗?下面是小编收集整理的一次函数说课稿范文,希望能够帮助到大家。

一次函数说课稿范文(通用10篇)

  一次函数说课稿 1

  大家好!我今天说课的内容是xx版八年级上册第七章第三节《一次函数》第1课时,下面我将从教材分析、教法学法分析、教学过程分析和设计说明等几个环节对本节课进行说明。

  一、教材分析

  1、教材地位和作用

  本节课是在学生学习了常量和变量及函数的基本概念的基础上学习的,学好一次函数的概念将为接下来学习一次函数的图象和应用打下坚实的基础,同时也有利于以后学习反比例函数和二次函数,所以学好本节内容至关重要。

  2、教学目标分析

  根据新课程标准,我确定以下教学目标:

  知识和技能目标:理解正比例函数和一次函数的概念,会根据数量关系求正比例函数和一次函数的解析式。

  过程和方法目标:经历一次函数、正比例函数的形成过程,培养学生的观察能力和总结归纳能力。

  情感和态度目标:运用函数可以解决生活中的一些复杂问题,使学生体会到了数学的使用价值,同时也激发了学生的学习兴趣。

  3、教学重难点

  本节教学重点是一次函数、正比例函数的概念和解析式,由于例2的问题情境比较复杂,学生缺乏这方面的经验,是本节教学的难点。

  二、教法学法分析

  八年级的学生具备一定的归纳总结和表达能力,所以本节课采用创设情境,归纳总结和自主探索的学习方式,让学生积极主动地参与到学习活动中去,成为学习的主体,同时教师引导性讲解也是不可缺少的教学手段。根据教材的特点,为了更有效地突出重点,突破难点,采用了现代教学技术----多媒体和实物投影。

  三、教学过程分析

  本节教学过程分为:创设情境,引入新课→归纳总结,得出概念→运用概念体验成功→梳理概括,归纳小结→布置作业,巩固提高。

  为了引入新课,我创设了以下四个问题情境,请学生列出函数关系式:

  (1)梨子的单价为6元/千克,买t千克梨子需m元钱,则m与t的函数关系式为m=6t。

  (2)小明站在广场中心,记向东为正,若他以2千米/时的速度向正西方向行走x小时,则他离开广场中心的距离y与x之间的函数关系式为y=-2x。

  (3)小芳的储蓄罐里原来有3元钱,现在她打算每天存入储蓄罐2元钱,则x天后小芳的储蓄罐里有y元钱,那么y与x之间的函数关系式为y=2x+3。

  (4)游泳池里原有水936立方米,现以每小时312立方米的速度将水放出,设放水时间为t时,游泳池内的存水量为Q立方米,则Q关于是t的函数关系式为Q=936-312t。

  然后请学生观察这些函数,它们有哪些共同特征?

  m=6t;y=-2x;y=2x+3;Q=936-312t

  学生们各抒己见,最后由教师引导学生得出:它们中含自变量的代数式都是整式,并且自变量的次数都是一次。

  然后再问:你们能否用一条一般式来表示它们的共同特点?学生可能用两条一般式来表示:y=ax与y=bx+c(因为这节课我已上过)。教师对两条都进行肯定,同时追问;这两条能否选择一条呢?经过讨论,最后确定式子y=kx+b为能代表共同特征的解析式,我们称之为一次函数,今天这节课我们就来学习一次函数。

  这样通过创设问题情境,让学生通过比较函数解析式的具体特征,引出一次函数,提出了课题,让学生感受到一次函数存在于生活中,与我们并不陌生,增强了学生学好本节课的信心,同时也为一次函数概念的落实打下基础。

  提出课题后,教师说明:一般地,函数y=kx+b就叫做一次函数。然后问学生:作为一次函数的解析式y=kx+b,在y、k、x、b中,哪些是常量,哪些是变量?哪一个是自变量?哪个是自变量的函数?很明显,x、y是变量,其中自变量是x,y是x的函数,k、b是常量。那么对于一般的一次函数,自变量x的取值范围是什么?k、b能取任何值吗?很明显,x可取全体实数,k、b都是常数,但k≠0,因为如果k=0,那么kx=0,就不是一次函数了,所以一次函数的一般式后面应添上k、b都是常数,且k≠0,这里的k叫做比例系数。那么b可以等于0吗?当然可以,b=0就是引例中前2条式子的一般式,由此可知,当b=0时,函数就成了y=kx,,它是特殊的一次函数,我们称之为正比例函数,其中的常数k也叫做比例系数。

  由于一次函数和正比例函数的概念是本节课的重点,所以得出概念后,教师还应对概念进行强调:一次函数的一次指的是自变量x的指数是1次;比例系数k不能为0,但既可取正数,也可取负数;b可以为任何实数,当它取0时为正比例函数,也可以这样说:所有形如y=kx+b(k≠0)的函数都是一次函数,反过来,所有的一次函数都可以写成y=kx+b的形式。同理,所有形如y=kx(k≠0)的式子都是正比例函数,反过来,所有的正比例函数都可以写成y=kx形式。

  为了及时巩固概念,教师以快速抢答的形式让学生完成书上做一做:

  做一做:下列函数中,哪些是一次函数,哪些是正比例函数?系数k和常数项b的值各是多少?

  ①c=2πr;②y=x+200;③t=;④y=2(3-x);⑤s=x(50-x)

  做完此题教师应强调:①中π为常数,所以比例系数为2π;④、⑤应先化,简,巩固了一次函数的概念,此时出示例1,学生就显得比较轻松。

  例1:求出下列各题中x与y之间的关系式,并判断y是否为x的一次函数,是否为正比例函数?

  ①某农场种植玉米,每平方米种玉米6株,玉米株数y与种植面积x(m2)之间的关系。

  ②正方形周长x与面积y之间的关系。

  ③假定某种储蓄的月利率是0.16%,存入1000元本金后,本息和y(元)与所存月数x之间的关系。

  例1应由学生口答,教师板书,判断是否属于一次函数应严格按照概念中的一般式,通过本例还让学生弄清楚了正比例函数都是一次函数,而一次函数不一定都是正比例函数。同时也体会到了根据题中的数量关系可直接列出一次函数解析式。如果班里学生比较优秀,也可请大家模仿例1自己编一个例子,写出函数关系式,并判断写出的函数关系式属于哪种类型。这种编写具有一定的难度,教师对于学生的一点点闪光点都要予以肯定。

  接着教师出示练习1:已知正比例函数y=kx,当x=-2时,y=6,求这个正比例函数的解析式。

  此题是书上课内练习改编过来的,书上的原题是求比例系数k,但我认为求函数解析式层次更高一些,同时为下节课的待定系数法打下基础。

  此题可以这样分析:要想求这个正比例函数解析式,必须求出k的值,只要把一组x、y的值代入y=kx,得到一条以k为未知数的一元一次方程,即可求出k的`值,然后就可写出解析式,建议教师板书过程,如果班里学生比较优秀,教师也可提到:如何求y=kx+b的解析式呢?同理可得只要求出k、b的值就可以了,k、b是两个未知数,只要两组x、y的值代入,联立二元一次方程组即可求出k、b的值,然后就可写出解析式,具体的操作下节课再学。

  以上设计使学生明白了如何求一次函数解析式及判断某条函数关系式是否为一次函数的方法,但大家都知道,学习了新知识,就是为了解决实际问题。

  由于例2是本节课的教学难点,里面的问题情景比较复杂,学生一下子难以适应,于是我对例2进行这样处理:

  先请同学们看屏幕:教师用多媒体出示一份国家2006年1月1日起实施的有关个人所得税的有关规定的材料,同时还附上一份税率表。

  然后问学生:哪位同学知道什么叫全月应纳税所得额,如果有学生讲出来更好,如果没人讲出来,教师自己介绍:应纳税所得额是指月工资中,扣除国家规定的免税部分1600元后的剩余部分。

  为了提高学生的学习兴趣,教师说:你想知道我们班数学老师和科学老师每月应缴个人所得税多少吗?老师们的隐私同学们是最想知道的,于是急着解决问题。

  我班数学教师的工资为每月2400元,科学老师的工资为每月2600元,问他俩每月应缴个人所得税多少元?

  相信学生很快就有答案(因为这节课我上过),并且方法几乎一致,都是用直接列算式的方法。教师对学生们的结果表示肯定,接着问:如果要计算10个工资均在2100元—3600元之间的教师每月应缴的个人所得税呢?还用直接列算式的方法吗?如果工资均在10000元以上呢?

  经过思考、讨论,发现工资额越大,计算应缴个人所得税的累计越麻烦,于是讨论有没有一种比较简单方法,如果有类似于计算公式的,把工资额直接代入就可求出的,那该多好啊!

  此时教师出示例2:按国家2006年1月1日起实施的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至2000元部分的税率为10%.

  (1)设全月应纳税所得额为x元,且500

  (2)小明的妈妈的工资为每月3400元,小聪妈妈的工资为每月3600元,问她俩每月应缴个人所得税多少元?

  有了刚才的铺垫,学生对此题有了深入的理解,就不再害怕了,教师可先由学生回答,再自己补充。可以这样分析:由于500

  此题的设计使学生体会到了运用函数模型解决实际问题的重要性,但某些爱动脑筋的同学可能会问:虽然运用函数可以解决一些实际问题,但方程也是解决实际问题的重要数学模型,它们有什么区别吗?怎样区别?拿到一道题怎么会想到用函数来解决,简单地说,如果没有特殊说明,能用方程解决的问题就用方程来解决,不能用方程来解决的问题就马上想到用函数来解决。但如何建立函数模型,具体的方法我们下节课再学习。

  本例的设计使学生既了解了国家的政策法规,又学会了用函数来解决实际问题,通过计算老师们的应缴个人所得税,让学生初步体会了个人所得税的计算方法,再假设要求多数人的所得税,激发了学生探求好方法的欲望,使学生体会到了函数的作用。

  为了使学生学有所用,就来完成书上课内练习2。

  最后在教师提问的基础上,让学生对本节内容进行归纳总结。

  本节课的作业是分层布置:A组、B组、C组分别由班里的三个不同层次的同学完成。

  四、设计说明

  本节课通过创设问题情境,归纳总结得出一次函数的概念,同时利用一次函数解决了生活中的实际问题。整节课没有大量的练习为基础,而是以提高学生的数学素质为指导思想,以学生积极参与教学活动为目标,以概念讲解为载体,以展开思维分析为主线,在课堂教学中,教师充分调动一切因素,让学生在和谐,愉悦的氛围中获取知识,掌握方法!整个教学既突出了学生的主体地位,又发挥了教师的指导作用。

  一次函数说课稿 2

  一、教材分析

  (一)本节内容在教材中的地位和作用

  本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

  本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

  (二)教学目标

  基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

  知识目标:

  1、理解直线y=kx+b与y=kx之间的位置关系;

  2、会利用两个合适的点画出一次函数的图象;

  3、掌握一次函数的性质。

  能力目标

  1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;

  2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

  情感态度目标:

  1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

  2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

  (三)教学重点难点

  教学重点:一次函数的图象和性质。

  教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

  二、教法学法

  1、教学方法

  1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

  目的:通过这种教学方式来激发学生学习的`积极主动性,培养学生独立思考能力和创新意识。

  2、直观教学法——利用多媒体现代教学手段。

  目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

  2、学法指导

  1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

  2、指导学生观察图象,分析材料。培养观察总结能力。

  三、教学程序设计

  (一)创设情境,导入新课

  活动1:观察:

  展示学生作的函数图象(课本P41做一做),强调列表及图象上的点的对应关系。

  1、课前让两名学生将图像画到黑板上,以备上课时应用。

  2、课上展示学生函数图像作业,既为学生完成作业情况检查,又为本节课打下基础。

  这样安排的目的:

  1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

  2、教师对学生有了更深层次的了解,能更好地把握课堂。

  (二)尝试探索、体验新知:

  活动2、观察探索:

  比较两个函数图象的相同点与不同点?

  第一步;根据你的观察结果回答问题。(书中原问题1、2、3)

  目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

  第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现"直线y=--6x+5与坐标轴交点"并思考:一次函数y=--6x+5又如何作出图象?

  目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

  活动3:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。

  目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

  活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)

  目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

  活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)

  目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

  (三)课堂小结

  引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

  目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

  (四)作业布置

  加强"教、学"反思,进一步提高"教与学"效果,

  做课本42页44页习题。

  一次函数说课稿 3

  一、说教材

  《一次函数》是苏教版初中数学八年级上册第六单元第二节的内容。从知识内容来说,本课是对函数的进一步认识与综合,进一步发展学生的抽象逻辑思维,渗透建模思想。函数本身是反映现实世界变化规律的重要模型,教材在编排上充分体现了从实际生活情境中抽象数学问题,建立模型并形成概念的过程,并将正比例函数纳入一次函数的研究中,力图通过实例从代数表达式的角度认识一次函数。从教材体系来说,之前学生已经掌握了变量之间的关系,初步体会了函数概念的基础之上的教学。通过本节课的学习可以培养学生函数思想和建模意识,为之后探究一次函数图像、二次函数等奠定了扎实的基础。本课的知识起到了承前启后的作用,也符合学生的认知规律。

  二、说学情

  八年级的学生好奇、好动、好表现,应尽量让学生发表自己的想法。因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系。

  因此在教学过程中教师要充分借助具体情境来激发学生学习兴趣的同时设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。

  三、说教学目标

  教学目标是教学活动实施的方向和预期达到的结果,是一切教学活动的出发点和归宿。精心设计了如下的教学目标:

  (一)知识与技能

  理解一次函数和正比例函数的概念,体会之间的联系,并能根据已知生活情境给出一次函数解析表达式,发展抽象概括能力。

  (二)过程与方法

  经历动手试验、规律探索的活动过程,提高抽象思维能力,并借助于将实际生活情境转化为数学问题,渗透建模思想。

  (三)情感态度与价值观

  在知识的探求过程中提高学习数学的兴趣,提高数学的应用意识。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

  (一)教学重点

  一次函数和正比例函数的概念。

  (二)教学难点

  能根据具体生活情景给出具体一次函数解析表达式。

  五、说教法和学法

  在教学过程中不仅要使学生“知其然”,还要使学生“知其所以然”。我们在师生极为主体也为客体的原则下展现获取理论知识,解决实际问题方法的思维过程。

  基于本节课内容的特点,我主要采用的教法有:

  情境教学法:借助具体情境等活动形式获取知识,以学生为主体,使学生的独立探索性得到充分发挥。

  讲解法:通过口头讲解、扼要板书,向学生描述情境,叙述事实,阐明规律,有利于系统获得新知。

  练习法:学生自主练习,夯实理论知识的基础上实现灵活运用。

  在教学中,精心设计每个教学环节,引导学生积极地参与讨论、合作交流,各抒己见。这样既能启迪思维,又增加了合作的意识,形成平等、宽松、民主的学习氛围。同时也能让学生动手、动脑去探索发现,并解决问题,真正体现以学生为主体的教学理念。在特定的情境中学习能激发学生学习兴趣,激发学生思维,转变学生的学习方式,变要我学为我要学。因此在学法上我采用的是小组讨论法、分析归纳法、总结反思法。

  六、说教学过程

  教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:

  (一)导入新课

  在这一环节,我会借助生活中所熟悉的情境引发学生独立思考,并要求学生尝试给出具体函数解析表达式。

  问题1:我校初二年级组织学生到距离学校6千米的动物园参观,小茗同学没赶上学校的包车,于是打算改乘出租车。出租车的收费标准如下:行驶3千米以内(含3千米)收费7元;超过3千米,每增加1千米,另收1.6元。思考:行驶千米数x和车费y(元)之间存在的函数关系?

  问题2:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克,弹簧长度y增加0.5厘米,思考:x与y的函数解析表达式?

  问题3:给汽车加油的加油枪流量为25L/min,用y(L)表示油箱中的油量,x(min)表示加油的时间,如果加油前油箱里没有油,那么在加油过程中,油箱里的油量与加油时间之间有怎样的函数关系?如果加油前油箱里有6L油,函数关系式又是?

  此时学生将生活实际问题抽象成数学模型,给出函数解析表达式:1、y=7+1.6(x-3)=1.6x+2.2;2、y=3+0.5x;3、y=25x、y=25x+6。下面要求学生对上述解析表达式观察并尝试指出变量与常量、因变量与自变量,对表达式进行总结归纳,得出共同特征:左边都是因变量y,右边是含自变量x的代数式,自变量和因变量的指数都是一次。在此基础上提问,如果将上述解析表达式中的常量用k和b来替换,如何书写函数解析表达式来引导学生总结归纳、建立概念,顺势引入课题。

  (设计意图:在这一环节,借助生活中所熟悉的情境来构建数学模型,尝试给出函数解析表达式,总结归纳,建立概念。一方面可以回顾之前所学的函数知识,指出变量与常量、自变量与因变量,另一方面可以培养学生总结归纳,概括能力。)

  (二)探究新知

  在这一环节,就前面所提出的问题建立概念:一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数,其中x是自变量,y是x的函数。特别地,当b=0时,y=kx(k为常数,且k≠0),y叫做x的正比例函数。紧接着对正比例函数和一次函数解析表达式的结构特点引导学生尝试总结其联系和区别,总结得出:正比例函数是特殊的一次函数,而一次函数不一定是正比例函数。

  接下来借助师生活动,要求学生用函数表达式表示下列变化过程中两个变量之间的关系,并指出其中的一次函数、正比例函数,能根据所给条件写出简单的一次函数表达式。

  1、正方形面积S随边长x变化而变化;

  2、正方形周长l随边长x变化而变化;

  3、长方形的长为常量a时,面积S随宽x变化而变化;

  4、高速列车以300km/h的速度驶离A站,列车行驶的路程y(km)随行驶时间t(h)变化而变化;

  5、如图,A、B两站相距200km,一列火车从B站出发以120km/h的速度驶向C站,火车离A站的路程y(km)随行驶时间t(h)变化而变化;

  学生独立思考,踊跃回答,发现1不是一次函数;2是正比例函数,解析表达式为l=4x;

  3是正比例函数,S=ax,其中a为常数;4是正比例函数,y=300x;5是一次函数,y=200+120t。

  紧接着乘胜追击要求学生找出上述一次函数解析表达式中的k、b的值。在学生回答的基础上,即时巩固一次函数的概念,并强化对k、b的认识。

  为了夯实对一次函数概念的理解,并发展建模意识,启发学生思考独立思考,小组合作,并实时点拨,最后请小组代表发表组内结果。出示例题:一盘蚊香长105cm,点燃后,每小时缩短10cm,

  1、写出蚊香点燃后的长度y(cm)与蚊香燃烧时间t(h)之间的函数表达式;

  2、该盘蚊香可燃烧多长时间?

  学生分析题干中的已知条件,建立等量关系,得出蚊香点燃后,每小时缩短10cm,t小时将缩短10tcm,所以蚊香点燃后的长度与燃烧时间之间的函数表达式为:y=105-10t;若蚊香燃尽,即y=0,由105-10t=0可得,该盘蚊香可燃烧10.5小时。

  (设计意图:本环节尝试引导学生在层层设置的问题串中寻求答案,认识一次函数,并能找出其中k、b的值,从而让学生真正体会一次函数的数学应用价值。此外借助师生活动、独立思考,尝试发现,理解一次函数和正比例函数的差异,加以区别。此过程充分调动学生学习数学的.积极性,也有利于学生在新知中尽情地探索。此外通过设置活动,引导学生动手操作、动脑思考、小组讨论来发现数学问题,并自主验证结论,最后师生共同归纳得出结论。整个环节让学生明晰了数学问题的探究过程。)

  (三)深化新知

  请学生思考:正比例函数和之前所学的正比例是否为同一概念?

  学生结合之前的知识,体会正比例函数是指形如y=kx+b(k、b为常数,且k≠0),且b=0时,此时y=kx(k为常数,且k≠0),则y叫做x的正比例函数,而正比例是两个变量之间的关系,当一种量变化,另一种量也随之变化,如果这两种量相对应的两个数的比值一定,则这两个量就成为成正比例的量,它们的关系叫做成正比关系。

  (设计意图:本环节在夯实学生旧知的基础上对学生易混淆的知识点进行整理,有利于学生建立良好的逻辑知识体系。)

  (四)巩固提高

  在这一环节,我会设置随堂练习:

  我国目前实行个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于4000元的部分征收3%的个人所得税,如某人每月收入为3900元,则他应缴个人工资、薪金所得税为(3900-3500)*3%=12元。

  1、当月收入大于3500元而小于4000元时,写出应缴纳的所得税y(元)与收入x(元)

  之间的关系式;

  2、某人月收入为3850元,他应缴纳的所得税是多少元?

  要求学生独立完成,同桌互相交流,教师适时纠正答案。

  (设计意图:通过这样的变式练习,深化认识一次函数的同时,也容易激发起学生的探索欲望。而且这个环节教师充分指导学生汇报展示,完成任务,将学习的主动权完全还给学生,让学生真正成为学习的主人。)

  (五)小结作业

  在小结环节,我会让学生回答以下问题:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

  (设计意图:通过小结,引导学生从知识内容和学习过程两个方面总结自己的收获。小学的课堂应着重让学生体会知识的获得过程,并能真正学会将所学的知识应用到实际生活,能发现生活中的数学问题。)

  而作业环节,请同学们完成练习题目,实现对课堂知识点的实时巩固。

  1、在函数y=-2x-5中,k=,b=;

  2、在一幢25层高的建筑物,如果底层高6米,以上每层高4米,求楼高h(米)与层数n之间的函数关系式,并写出自变量的取值范围。

  七、说板书设计

  我的板书本着简洁、直观、清晰的原则,这就是我的板书设计。

  一次函数说课稿 4

  今天我说课的内容是:一元一次不等式与一次函数。它是北师大版八年级下册第一章“一元一次不等式与一元一次不等式组”中的第五节内容。下面,我从教材理解、学情分析、设计思路、教学流程四个方面谈谈自己对这节课的思考和设计。

  一、教材理解

  一元一次不等式与一次函数是在前面学生学习了一元一次方程、一元一次不等式、一次函数的基础上安排的。本节内容的重点是利用一次函数的图象解一元一次不等式,它既是对一元一次方程、一元一次不等式、一次函数的进一步巩固与深化,又是后续学二次函数等知识的基础和铺垫,起着承前启后的重要作用。同时本节教材承担着“引导学生初步体会不等式、方程、函数之间联系和区别”的章节目标,它是本章中的一个难点,渗透着数形结合的数学思想,反映了“事物是普遍联系”的哲学规律。本节内容的学习,对于启发学生数学思维,开拓学生的数学视野,提高学生的数学能力有着十分重要的意义。

  依据课标要求和教材内容,我确定本节的教学目标是

  1、通过观察图象,使学生初步掌握利用一次函数图象来解一元一次不等式的方法。

  2、通过学生合作探究,初步体会一元一次不等式、一元一次方程、一次函数之间的内在联系。

  3、培养学生数形结合的意识和解决实际问题的能力,使学生充分感受数学的价值,进一步激发学习数学的热情。

  二、学情分析

  我校是一所山区乡镇初中,办公条件相对较差,为了适应课堂教学改革的需求,近期学校在每个教室三面墙体装上黑板,并用竖线分成30小块,每块黑板都是学生课堂交流展示的平台,为学生创造了极大的展示空间。

  教室内学生的座位分布以小组为单位,6人课桌相并,相对而坐,好、中、差不同层次学生相互搭配,组成6人学习小组,便于课堂上合作交流,互帮互学,互相促进。经过近段来的'实践引导,学生的积极性大为提高,主动性明显增强,良好的学习习惯正在逐步养成。小组内部及小组之间讨论热烈,学生思维活跃,敢想敢说,课堂氛围浓,教学效果好。

  在学习本节内容之前,学生已经能够熟练运用代数方法解出一元一次方程和一元一次不等式;能准确根据函数关系式画出图象,并能从图象中分析出变量之间的关系;能找出简单实际情境中的变量及相互关系。这些已有的知识和经验对于完成本课时目标十分重要,但由于本节内容综合性强,并且比较抽象,再加上学生基础、能力有限,所以学生对本节内容的掌握估计有一定的困难。

  三、设计思路

  根据教材特点和学生实际,以及数学课程标准中提出的三个方面的教学实施建议:1、让学生经历数学知识的形成与应用过程;2、鼓励学生自主探索与合作交流;3、注重数学知识之间的联系,提高解决问题的能力等要求,同时结合初中生好奇心、求知欲强等特点,为了充分体现学生的主体作用,培养学生自主学习的精神,首先在新课导入时用简明的引言,点明课题,激发学生学习本节知识的兴趣,调动学生参与学习的积极性;其次在课堂学习中,运用新课程提倡的“自主探究、合作交流”的学习方式,引导学生主动地从事观察、猜测、推理、交流等教学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。为此,本节课的教学,我将采用“提纲导学——交流展示——训练提升——学习评价”四环节主体参与式教学方法。

  四、教学流程

  本节课的教学流程分为提纲导学、交流展示、训练提升、学习评价四个部分。

  一、提纲导学

  教师用简练的引言,设置疑问,创设情境,导入新课。然后向学生发放提纲导学活页,其内容包括两个部分:一是学习目标,二是导学习题。出示教学目标的目的是为了让每个学生都明确本节课的学习任务,增强学习的目的性和方向性;导学习题是对教材内容的深度设计和处理,它紧扣课时目标,体现了知识由浅入深的层次性,符合学生的认知规律。同时问题以填空的形式呈现,更加具体,便于学生操作。

  学生明确目标后,结合课本20页上方的函数图象,自学完成导学习题。时间预设为8分钟。自学中遇到的疑难问题在小组中合作探究解决,教师深入小组指导自学。

  二、交流展示

  这个环节是在自学的基础上,让学生充分交流展示个人或小组的自学成果。时间预设为15分钟。具体过程为:每个小组至少两人在黑板上展示导学习题的自学成果,教师要引导学生主动参与,鼓励学生积极参与,保障全班三分之二以上的学生参与展示,力争黑板不留空白,让学生在参与中彰显自我,在展示中提高自我。没有在黑板上展示的同学,也要积极融入展示活动,可以随时上前标出展示中的“错误”,并写出自己的意见。书面展示结束后,教师根据学生的作答情况,有策略地请出多名学生向全班同学讲解自己解题的思路和过程,在讲解中,全体同学参与互动,有疑则问,有问则答,同时从思路、表达等方面对学生进行评价。

  前4个问题的设计主要是为了完成“用一次函数图象解一元一次方程和一元一次不等式”的课时目标,它是课时重点,所以,自学时间要充裕,展示活动要充分,交流讲解要全面。第5个问题是本节的教学难点,学生很难独立完成,教师要组织学生互动探究,鼓励学生迎难而上,同时点拨释疑,引导思路,帮助学生自己逐步得出结论,并展示在黑板上。教师强调后,根据学生的学情分层提出要求。

  三、训练提升

  通过前两个环节的实施,学生已经初步完成了本课时的学习目标,为了巩固学习成果,检测课堂学习效果,所以设计了这个环节。本环节包括练习和讲解两个环节,时间预设为练习10分钟,讲解8分钟。训练的题目为课本“想一想”、“做一做”中的问题。以上问题由学生独立完成,每组抽查两名学生在黑板上分别完成。提前

  完成的学生由教师检查评价后,做课后作业,同时承担帮助组内学困生完成训练题的任务。待全班学生基本完成后,抽查3名以上学生到黑板上讲解。问题二有多种解题思路,教师要引导学生发散思维,用不同的方法解决问题,体会一次函数、一元一次不等式、一元一次方程之间的联系和作用,为下一课时的学习做好铺垫。

  四、学习评价

  教师对课堂目标的完成情况以及学生的学习情况、学习状态、参与程度、知识掌握程度进行课堂学习综合评价。这一个环节不是孤立存在的,它贯穿于课堂教学的全过程,教师在每个环节,都要对学生学习活动进行适时评价,对表现积极、学习自主的学生进行表扬,对稍差的学生提出改进的办法,促使他们进一步掌握学习数学的方法,激励全体同学高效率地参与课堂学习,生成知识,提高能力,从而有效地完成课时目标和任务。

  一次函数说课稿 5

  我是来自xx市兴凯湖乡中学的一名数学教师,姓名xxx。现任教数学学科。我今天参加说课大赛的题目是《一次函数图象的应用》。下面我说课开始,请各位评委对于不当之处给予批评指正。

  新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

  数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课的教学内容与学生的生活联系十分紧密,设计正是基于以上考虑而进行的。

  一、教材分析:

  1、教材内容所处的地位及作用

  本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第六章第五节,课题为《一次函数图象的应用》。本节课为第一课时。其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。特别是在本节课中将要探索的“一次函数与一元一次方程的关系”,将为学生今后探索“一次函数与二元一次方程组的关系”以及“二次函数与一元二次方程的关系”起到重要的引领作用,这也将是本节课的一个难点问题。同时,本节课的重点就是要使学生体会数学知识与现实生活之间的密切联系,增强数学学习的应用意识。函数是描述客观世界变化规律的重要数学模型,在现实生活中有着广泛的应用,初中阶段,学生主要接触并学习三类函数,即一次函数、反比例函数和二次函数。最先学习的便是一次函数。在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

  在《数学课程标准》中,对于本节内容提出了明确的要求,另外,一次函数图象的应用这一知识点在学生中考中有着重要的作用。在中考中,对于函数知识的考查,主要放在了一次函数上,分值在13分左右,在整个初中数学知识体系中,这一分值比例是很大的。而在一次函数中,又主要考查学生对于一次函数图象的分析、解读以及应用其解决问题。我省中考题中,多年来必有一道分值在8分左右的大题(25题)是在考查学生应用一次函数的图象解决问题的意识和能力。以上几个方面足可以证明一次函数图象的应用所处的重要地位和作用。

  2、教学目标:

  ⑴、知识与能力:

  ①、能通过函数图象获取信息,发展形象思维。

  ②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

  ⑵、过程与方法:

  ①、在亲身的经历与实践探索过程中体会数学问题解决的办法。

  ②、初步体会方程与函数的关系,建立良好的知识联系。

  ⑶、情感态度与价值观:

  ①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。

  ②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

  3、教学重点、难点及其确立的依据:

  由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:

  1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

  2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。

  二、学情状况分析:

  1、学生现状:

  针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:

  ⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。

  ⑵、学生整体上知识功底较好,在数学问题的'解决上已初步形成了一定的方法。

  ⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。

  ⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。

  2、知识情况:

  本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。

  3、预期效果:

  学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合”、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。

  另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到效果。

  三、教学方法及策略:

  如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

  1、教学方法:

  根据本节课的特点、目标要求及学生的实际情况,在教学方法上主要采用引导观察启发,组织实践探索交流、提问引导探索发现等方法进行本节课的教学活动。

  2、教学的理论依据及教学策略:

  首先《数学课程标准》中明确要求在知识传授的同时,更要注重学生学习活动的过程以及相应的情感态度。将抽象的数学问题进行形象化、生活化是当前新一轮基础教育课程改革下所积极倡导的。因此紧密联系学生的生活经历和经验开展本节课的教学内容十分必要。将学生放在课堂教学的主体位置上,自己成为课堂的组织者、引导者并最终成为与学生的合作者是自己在本节课教学中的一个主导思想。

  其次,数学作为基础性的自然学科,很多知识的获取必须通过耐心细致的观察,特别是本节课,主要是通过一次函数的图象去获取信息(已知条件)进而去解决问题,因此引导学生进行大量细致的观察活动是十分必要的,这也是对学生一种良好学习习惯的培养。实践是验证结论的办法,所以本节课还特别安排学生进行了相应的实践验证活动,但数学实践并不一定是具体的实物操作,完全可以利用教材、多媒体网络资源开展,本节课就是如此。

  再次,充分引导组织学生参与学习活动中来,就必须要开展学生之间、师生之间的交流讨论与互动活动,因此本节课安排了一定的相关活动,使学生充分融入到学习活动中来。体现并凸现学生参与学习活动的过程。同时,探索发现新的结论是数学学科一重大特点,为了解决难点问题,在进行“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”这一问题的教学时,充分引导学生开展大胆质疑、主动探索、发现结论、解决问题、树立成就感等一系列活动,难点问题解决的同时,也培养了学生创新精神,也可以在某种程度上培养学生主动学习的探索意识。

  本节课自己将充分依据《数学课程标准》中所倡导的教师角色,即在课堂教学中真正意义上地成为学生学习活动过程中的组织者、引导者和合作者。充分与学生开展互动活动,与他们共同质疑、共同困惑、共同寻求解决问题的办法。同时在组织学生进行实践的过程中引导学生积极开展交流讨论活动,实现生生间的互动。同时,对教材内容进行一定的创造性使用,以达到更佳的效果。

  3、学习方法:

  本节课在对学生进行学法指导上,主要是要求和引导学生采用实践探索的方法,进而培养学生数学学习的良好习惯,渗透终身学习的意识,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。指导学生对一次函数的图象进行耐心细致的观察,使学生充分意识到细致的观察、审清题意是应用一次函数图象解决问题的基础和关键,通过范例使学生亲身体会到明确函数图象中两坐标轴所表示的实际意义是解决此类问题的关键。通过该方法的学习培养,帮助学生积累学习方法的同时,也使他们养成耐心细致的学习习惯。交流讨论与合作关系是本节课学生学习活动过程中的重点,通过该学习方法,使学生们充分意识到在数学学习中要互相帮助、互相促进,体会到团队的力量大与个人力量。引导学生主动探索发现新的数学结论是本节课学生学习方法的另一个重要的方面,可以使学生敢于发表自己的独到观点和想法,在函数与方程的关系的学习中,在自己的引导启发下,充分尊重学生的观点及想法,通过实践验证,发现新结论,进而培养学生主动探索新知识,发现新问题的终身学习意识。同时也可以帮助学生树立起获取新知识后的成就感,增强数学学习的信心和兴趣。

  四、教学程序:

  本节课的教学程序由以下几个环节构成,即创设情境、初步感受、经历体验、探究发现、问题解决、收获体会共六大环节。

  1、创设情境:

  这是本节课的引入(导入)部分,借助于多媒体,展示兴凯湖美丽的自然风光(培养热爱家乡、热爱大自然的情感),过度到干旱的荒漠地带的图片,引起学生强烈的震撼,进而过度到吉林省吉林市一家苯化工厂发生爆炸造成松花江水污染的生活实例(渗透环抱教育)。在此基础上,利用水库水的逐渐干涸以及松花江水中苯含量会随时间的推移而逐渐减少直至完全消失为情境,引出课题,明确学习目标及任务。该导入设计,一方面贴近学生的生活实际,与本节课的内容恰到好处的自然融合,而且还对学生进行了思想教育,一举两得。

  2、初步感受:

  本环节主要是引导组织学生对一次函数图象应用的问题进行初步的感受,师引导学从已有的学习经验出发,利用大屏幕展示教材中的引例,提出环环相扣的问题,例如问题;图象中反映的是哪两个变量的关系?横轴表示的是什么?纵轴表示的是什么?你能从图象中获取哪些信息?你是如何获取的?等等。这一设计旨在使学生意识到如何去从函数的图象中去获取有效的信息进而去解决问题,同时在本环节中特别地引导学生将函数中的数学语言向生活语言转化,这也是此类问题解决时学生必须处理好的关键环节,如果这两个方面的问题处理好了,学生解决此类问题就会更容易一些。其实本环节也是为学生打好基础的一个环节。既是新知识的学习环节,也是新知识的准备和铺垫的环节,该环节将对下面的学习起到至关重要的作用。同时本环节中学生将亲身体会到如何利用一次函数的图象解决问题。特别地借助于教材中的图象引导组织学生开展了猜想、实践等活动。整个环节中,自己始终利用大屏幕进行相应结论的直观展示,使课堂教学呈现形象化和直观化。

  3、经历体验:

  本环节是本节课的重点内容,即例题的学习解决的过程,也是应用一次函数的图象解决具体问题的过程,由于在上一个环节中学生已对此类问题有了亲身的感受,因此本环节虽是解答教材中的例题,但难度并不大,学生完全可以独立完成,特别本例题是一道摩托车行驶路程与油箱剩余油量关系的一次函数图象,与学生的生活经历密切联系,所以学生在解答中对题意的理解上不会出现问题。为了更好地使问题直观化和形象化,自己利用多媒体课件进行了动态演示,使学生直观地体验到了随着行驶路程的增加摩托车油箱内剩余油量在逐渐减少这一变化过程。因此本环节中自己将更多的时间留给了学生,由他们在交流讨论中独立地完成例题的解决。但由于本题描述的是“摩托车油箱中的剩余油量与摩托车行驶路程的关系”而并非“摩托车油箱中的消耗油量与摩托车行驶路程的关系”,如果学生审题不清很容易出现问题,对此自己事先积极进行了预防,并在此基础上特别提醒学生解决此类问题是要认真审题,确实发现图象中所反映的究竟是哪两个变量之间的关系,以免问题解决时出现错误。事实上这一点在上一个环节中已经进行了特别的强调。另外,将生活语言问题转化为数学函数图象语言问题也是本环节着力培养训练的内容,因为这是学生解决此类问题的一个突破点。由于学生在口头回答时会很容易,但用数学语言符号书写时会出现问题,因此,自己利用大屏幕特别出示了问题解答时规范的书面数学语言,帮助学生养成规范的数学学习习惯,明确数学学习的严谨性。在例题解决后,为了使学生更好地对此类问题进行合理的分析与解答,避免因审题不清而出现错误,自己还特别地提出了这样一个问题:“试一试:如果其它条件不变,我们想反映该摩托车消耗油量y(升)与行驶路程x(千米)之间关系的图象,在该图中应该是怎样的?”然后组织学生进行讨论解答,自己利用大屏幕给出正确答案。利用这种对比性教学,有利于加强学生思维能力的训练。

  4、探究发现:

  本环节主要是引导学生发现“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”。为了突破这一难点,自己在本环节中先出示了这样一个问题:观察图象回答问题

  (1)当y=0时,x=()

  (2)直线对应的函数表达式是()

  由于在前面几节课中的学习,学生完全可以解决上面问题。在此基础上,组织学生解方程:y=0.5x+1。进而提出问题,你发现什么了?用自己的语言进行归纳。自己利用大屏幕给出规范化的结论:

  ①、从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变量的值即为方程0.5x+1=0的解。

  ②、从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解。

  这种教学方法,从具体的实际问题入手,由特殊问题到一般规律的揭示,不仅解决了难点问题,而且从另外一个角度讲也渗透给了学生们在数学学习活动中如何探索并形成数学结论的方法。有利于学生主动探索意识的培养。

  5、问题解决:

  本环节主要是应用本节课所学的知识以及所积累形成的学习经验和体验解决问题的过程,即课堂巩固训练。在练习题的选择上,由简单到复杂。先是结合图象获取信息进行简单的填空和选择,然后进行了一道发散思维问题的训练,即让学生结合“龟兔赛跑”的故事在同一坐标系中大致画出龟兔赛跑的图象。主要是为了训练学生发散思维的意识和能力。同时考虑到本节课内容在中考中的重要性,自己特别地将20xx年xx市中考题进行了引导练习。

  6、收获体会:

  本环节主要是课堂小结的过程,引导学生从知识、学习过程(学习的经历、体验)、情感态度等方面进行归纳,主要由学生之间互相合作补充发言完成,对于学生忽略的地方自己进行引导性弥补。在此基础上布置本节课的作业,作业分为两部分,一方面布置一次函数图象应用的作业;一部分布置一次函数与一元一次方程关系的作业。

  五、预期效果:

  略。

  一次函数说课稿 6

  一、分析教材与学生:

  这是华师大八年级数学(下)第17章第3节中的一堂课。本节课是在学生学习了平面直角坐标系、函数的图象,一次函数及其图象的基础上学习的,它既是对前面知识的延续,又是为后面学习反比例函数、二次函数的性质作铺垫,也是今后学习高中代数,解析几何及其它数学分支的重要基础。在教材中起着承上启下的作用。其中所渗透的“数形结合”,归纳等数学思想方法是对学生的数学有重要的作用。学生在理解图象的性质,以及运用数形结合的思想解决问题,感到困难。结合以上分析,确定本节课的重难点为:

  教学重点:结合图象,使学生进一步理解一次函数的图象。

  和性质;

  教学难点:根据图象的性质来解决一些实际问题。

  教学关键:利用数形结合的思想,辅以电脑演示动画,变抽象为形象,注重知识的形成、发展过程,使学生在这些过程中展开思维,从而突出重点、突破难点。

  二、教学目标:

  ①知识目标:

  1、理解一次函数图象的性质,及学会性质判断函数值大小。

  2、学会待定系数法求一次函数解析式。

  ②能力目标:培养学生观察、分析的能力,数形结合能力,化归能力,及与他人合作学习能力,培养学生创造性思维和逻辑推理的能力。

  ③情感目标:体现了知识来源于实践,而又运用于生活。

  同时渗透转化的思想,让学生体验客观事物是不断运动发展变化,而事物之间总是互相联系,互相制约的辩证唯物

  主义观点

  三、陈述教学设想:

  1、教法分析:本节课基本设计思路是着力于学生探索知识、体验知识发生、发展形成过程,通过创设探索学习情境,组识学生小组讨论、合作,让学生经历“尝试——猜想——验证”的过程中接受知识。获取知识。教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

  2、学法分析:通过让学生社会调查,收集有关资料等活动设计,引导学生观察、发现、转化,并在学生动手实践,自主探索,合作交流的基础,培养其互相协作能力,达到教法与学法的有机结合。以学生为主体,通过自主探索的方法,引导学生通过实践、思考、探索、交流获得知识,形成技能。培养学生动手,动口,动脑的能力。

  ①学会通过观察、比较、推理能概括一次函数的图象与性质。

  ②学会利用旧知转化成新知,解决新问题的能力。

  ③学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

  3、用及课程资源开发:本课将采用多媒体课件教学、辅之于投影图片等

  四、教学过程:

  (一)创设情景,引入课题:

  1、教师事先让学生利用课余时间到去了解联通公司手机使用收费情况,提出问题

  (1)联通的月租费是多少?

  (2)每分钟费用又是多少?

  在这基础上,让学生自己设计一个问题,然后能用函数关系来表示,从而引出诸如像y=30+0.3x等关系式组织学生讨论,生活中这样的函数关系式还能写出一些吗?

  2、教师让学生算一算,取10分、20分时所化费用并比较y1与y2的大小,我们可以从图象上又更直观地判断函数值的大小,从而引出课题:一次函数的性质(出示课题)

  (二)师生互动,探求新知

  (1)先让学生画出y=30+0.3x(x≥0)图象

  (2)让学生先独立思考,提出问题

  ①图象的位置从左到右是怎样变化的

  ②函数的值随着x又如何变化?在此基础上,组织四人小组讨论

  (3)交流阶段,每组派代表上台发表汇报本小组成员的探索与成果,同时回答其他小组同学的提问

  (4)教师又让学生自己画出y=—x+2,及y=—2x—1的图象,并再次组织讨论。

  最后,教师根据刚才学生讨论交流情况,用多媒体显示,学生得到的一次函数的性质

  ①K>0时,y随x的增大而增大,这时函数的图象从左到右上升。

  ②K<0时,y随x的增大而减小,这时函数的图象从左到右降低。

  (5)这时教师又带领学生回到课一开始时提出的问题让学生学会从图象上观察,函数值的`大小,从而培养数形结合能力,及应用能力,也能使所学知识得到及时巩固。

  (三)面授调节,练习反馈

  1、教师用多媒体显“做一做”然后组织学生独立完成

  2、巩固一次函数的性质,

  设计如下练习

  (1)y=(m-4)-2,当m取何值时,y随x的增大而增大

  (2)y=(m+0.5)xm2+1是一次函数,且y随x的增大而减小,求m值

  (3)图象上有两点(—1,a),(3,b)请比较a、b的大小

  (这题练习鼓励学生运用多种方法解决,然后让他们自己比较方法好坏)

  (4)设计一个实际应用题,让学生运用刚学的新知识尝试解决。

  (5)讲解课本例题,简要介绍待定系数法,及如何用“两点法”求一次函数解析式。

  3、同桌之间互相出题,再次巩固性质

  设计练习如下,已知一次函数图象如图如示,求一次函数解析式。

  (四)、梳理知识,系统归纳

  1、归纳总结:①哪些函数y随x的增大而增大?哪些函数y随x的增大而减小②与系数k、b的符号有何关系?③小结后填表

  图象的位置性质相同点

  2、提问:①通过这一节课学习,大家有哪些体会和收获?

  能说说吗?

  ②这节课你能用所学的一次函数的性质来解决生活中的实际问题吗?

  ③这节课我们学习了哪些数学思想方法?

  (同桌对讲、畅谈自己的感受和体会、学生发言,教师归纳、总结)

  (五)布置作业

  1、必做题见作业本(A)

  2、选做题:①A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城往C、D两地运费分别为20元/吨和25元/吨,从B城运往C、D两地运费分别为15元/吨和22元/吨,现已知C地需要220吨,D地需要280吨,如果某个体户承接这项运输业务,请你帮他算算,怎样调运花钱最少。

  3、写一篇有关“一次函数性质”的小论文。

  (六)、板书设计:

  一次函数的性质

  性质:

  小结:

  教师作图演示区

  表格:

  (七)说评价:

  学生学习数学的过程是一个基于学生经验的主动建构的过程。新课程理念下的教学过程是生生、师生交往,积极互动的过程。使学生通过互动得到其相应的发展是我们进行教学的根本宗旨,同时,学生之间互相合作,彼此获得双赢,我们所采取的一切方法都是为这个宗旨服务的,我们教师怎样才能在“动”的课堂时刻把握方向引领学生,到达发展学生的彼岸,是我们必须思考的问题。“关注学生的生活,认识经验”是新课标所提倡的,在本堂课设计中,我力图体现上述宗旨。

  (八)教学设计说明:

  本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。基于这一原则,我对本节课教学设计的指导思想如下:

  ⑴以实现教学目标为前提:强调学生双基的培养以及思想品德教育,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

  ⑵以现代教育理论为依据:注重学生的心理活动过程、人类掌握知识和形成能力的发展过程,强调教学过程的有序性。

  ⑶以基本的教学原则作指导:充分发挥学生的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知。

  ⑷以先进的现代信息技术为手段:适当地辅以先进的电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学媒体有机结合,以实现教学最优化。

  一次函数说课稿 7

  一、教材分析

  1、教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

  2、教学重难点

  重点:一次函数与二元一次方程(组)关系的探索。

  难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

  3、教学目标

  知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

  数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

  解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

  情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

  二、教法说明

  对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

  三、教学过程

  (一)感知身边数学

  多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

  学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

  [设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

  (二)享受探究乐趣

  1、探究一次函数与二元一次方程的关系

  填空:二元一次方程可以转化为________。

  思考:

  (1)直线上任意一点一定是方程的解吗?

  (2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

  (3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

  [设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  2、探究一次函数与二元一次方程组的关系

  (1)在同一坐标系中画出一次函数和的图象,观察两直线的交点坐标是否是方程组的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

  此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从“形”的'角度看,解方程组相当于确定两条直线交点的坐标。

  (2)当自变量取何值时,函数与的值相等?这个函数值是什么?这一问题与解方程组是同一问题吗?

  进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

  [设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

  (三)乘坐智慧快车

  例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0.05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

  解法1:设上网时间为分,若按方式A则收元;若按方式B则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

  解法2:设上网时间为分,方式B与方式A两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

  注意:所画的函数图象都是射线。

  [设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

  (四)体验成功喜悦

  1、抢答题

  (1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

  (2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

  2、旅游问题

  古城荆州历史悠久,文化灿烂。今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

  [设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  (五)分享你我收获

  在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

  (六)开拓崭新天地

  数学日记

  姓名日期

  一次函数说课稿 8

  一、教材分析

  一教材的地位和作用

  今天我说课的内容是人教版八年级上册第十四章一次函数第一课时,本节内容四个课时完成。我设计的是第一课时的教学,主要内容是一次函数概念。学生已经学过了正比列函数之后来学习一次函数。一次函数既为前面学过的正比列函数知识得以概括和升华,也为后面学习函数知识打下了坚实的基础,因此,一次函数的学习起到了承上启下的作用。

  二、教学目标

  1.知识技能目标

  (1)掌握一次函数的概念和解析式的特点;

  (2)知道一次函数和正比列函数的关系;

  (3)会利用一次函数解决简单的数学问题。

  2.过程和方法

  (1)通过登山问题和正比例函数的概念引出一次函数的概念,培养学生的探究能力;

  (2)在教学过程中,让学生学会知识迁移、以及类比的思想。

  3.情感和态度

  (1)通过“登山问题”的研究,体会建立函数模型思想;

  (1)通过本节课的学习,向学生渗透数学和实践生活的紧密联系。

  三、教学重点

  1.一次函数的定义和解析式的`特点;

  2.一次函数和正比列函数的关系;

  3.一次函数定义的应用以及解决相关的问题。

  四、教学难点

  一次函数和正比列函数的关系以及一次函数的应用。

  二、学情分析

  学生已经学过了正比列函数的相关知识,并结合实际的情境认识了正比例函数的意义、图像和性质以及一元一次方程等相关的知识。能利用正比列函数的思想解决简单的实际问题,为学生学习一次函数奠定了基础。

  三、学法分析

  用观察、思考、概括、总结、归纳、类比、联想是学法指导的重点

  四、教法分析

  采用“引导------发现式”的教学法

  五、教学过程

  一次函数说课稿 9

  一、教材分析

  (一)教材的地位和作用

  函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

  (二)教学目标

  新一轮的课程改革,旨在促进学生全面、持续、和谐的发展,我认为本节课的教学应达到以下目标:知识技能方面:理解一次函数与二元一次方程组的关系,会用图象法解二元一次方程组;

  数学思考方面:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去思考问题;

  解决问题方面:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题;

  情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

  (三)教学重、难点

  从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

  二、教法分析

  《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高”的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

  三、过程分析

  本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

  这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

  为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程

  转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程

  的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

  紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的.探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

  这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

  为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

  学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0≤x<400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x>400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y>0,y=0及y<0时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

  为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

  在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

  本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

  四、设计说明

  这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

  一次函数说课稿 10

  一、教材分析

  1、教材的地位和作用

  这一节课的内容是在学生学习了前面的一次函数后,从运动变化的角度,用函数的观点加深对已经学习过的方程、不等式的认识,构建和发展相互联系的知识体系。也通过这节课让学生进一步体会函数的重要性,提高多角度、灵活的分析问题与解决问题的能力,对发展学生“数形结合”的思想和辩证思维能力具有重要的意义;同时也为今后的二次函数的学习奠定了良好的基础。所以,本节课在整个初中数学学习阶段具有相当重要的地位与作用。

  2、学情分析

  在本节课教学内容之前,学生已学过一元一次方程和一次不等式的代数解法以及一次函数的相关知识,但是把它们利用函数图象联系在一起,结合数形结合的思想,来理解它们之间的关系,这对于八年级学生来说,理解起来还是会有点困难,因此,在本节课的教学中,要让学生反复实践,引导学生观察、思考、探究、交流,然后再启发学生归纳得出结论,以发展学生数形结合的思想和方法。

  3.说教学目标和重、难点

  新课改的精神在于以学生发展为本,能力培养为重,根据数学课程标准的课程目标、课程内容、课程要求以及本节课的结构,结合本班实际,特确定如下教学目标:

  ①、认识一次函数与一元(二元)一次方程(组)、一元一次不等式之间的联系。

  ②、会用函数观点解释方程和不等式及其解(解集)的意义,初步形成用全面的观点处理局部问题。

  ③、经历用函数图象表示方程、不等式解的过程,进一步体会“以形表示数,以数解释形”的数形结合思想。

  学习重点:理解一次函数与一次方程(组)、一次不等式的联系。

  学习难点:根据一次函数的图象求一元一次方程的解和一次不等式的解集,发展学生数形结合的思想和辩证思维能力。

  突破难点的关键在于发挥教师的'主导作用,适时点拨引导,使得学生在合作交流的过程中找到方法,使得学生解决问题的能力得以发展。

  二、教法与学法分析

  1、教法分析:为充分调动学生的积极性,变被动学习为主动学习,突出重点,突破难点,达到本节课所设定的教学目标,设计如下教法与学法:探索发现法,小组讨论法,实验操作法,结合现代技术教学手段。通过这些教学方法和手段的整合发挥,创设具有现实性,挑战性、趣味性的情境,引导学生主动质疑,探究、调查。

  2、学法分析:新课改提出以学生发展为本,把学习的主动权还给学生,创造积极主动、三、教学过程设计

  1、知识回顾

  0的点在哪里?

  让学生重新观察一下平面直角坐标系,思考:

  (1)纵坐标等于0的点在哪里?

  (2)纵坐标大于0的点在哪里?

  (3)纵坐标小于0的点在哪里?

  、设计意图:由于x轴把平面直角坐标系分成了三个部分,通过复习每一部分内点的纵坐标的取值特点,为后面问题打好基础,作好新知识的衔接。

  已知一次函数y=2x+6和它的图像,①坐标系中y=0的点在哪里?函数图象上,函数值y=0的点是谁?它的横坐标x取什么值?

  ②一次方程2x+6=0的解是谁?它与y=2x+6同x轴的交点横坐标有何关系?为什么?

  设计意图:方程可以直接用代数方法求解,而且会更准确、更快捷。但这里的意图是让学生通过图象直接得到。引导学生体会既可以运用函数图象解方程,也可以运用解方程帮助研究函数问题。使学生建立一元一次方程与一次函数的联系,培养学生良好的数形结合意识,发展学生的形象思维,同时培养和训练学生的识图能力。

  (学生通过观察图象,然后得出结论)

  一次函数y=2x+6的图象与x轴交点坐标为(-3,0),而-3正是方程2x+6=0的解。

  从数的角度看,一次方程kx+b=0的解,就是一次函数y=kx+b的图象与x轴交点的横坐标的值。(也就是y=0时,x的值。)

  从图象上看,一次方程kx+b=0的解就是一次函数y=kx+b的图象与x轴交点的横坐标的值。

  知识拓展1:

  下面三个方程有什么共同特点?你能从函数的角度对解这三个方程进行解释吗?(1)2x+1=3;

  (2)2x+1=0;

  (3)2x+1=-1。

  设计意图:通过本题把形如ax+b=k的一元一次不等式与一次函数y=ax+b联系起来,是一元一次方程与一次函数关系的拓展。

  学生总结:

  从数的角度看,解一元一次方程ax+b=k就是求当函数值为k时对应的自变量的值。

  从图象上看,解一元一次方程ax+b=k就是求一次函数y=kx+b图象上纵坐标为k的点的横坐标。

  ①根据一次函数y=2x+6的图像,回答:x取哪些值时y>0;x取哪些值时y<0

  ②不等式2x+6>0的解是谁?不等式2x+6<0的解是谁?

  问题①②有何关系?

  设计意图:这两个不等式都可以直接用代数方法求解,而且会更准确、更快捷。但这里的意图是让学生通过图象直接得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

  (学生根据自己的思考,并分组讨论、交流,然后得出)

  一元一次不等式2x+6>0(或2x+6<0)y="2x+6中y">0(或y<0)时x的取值范围。

  从数的角度看,解一元一次不等式kx+b>0(或kx+b<0),就是求使一次函数y=kx+b取正值(或负值)时x的取值范围。从图像上看,kx+b>0的解集是使直线y=kx+b位于x轴上方部分相应x的取值范围,kx+b<0的解集是使直线y=kx+b位于x轴下方部分相应x的取值范围。

  知识拓展2

  下面三个不等式有什么共同特点?你能从函数的角度对解这三个不等式进行解释吗?能把你得到的结论推广到一般情形吗?(1)3x+2>2;

  (2)3x+2<0;

  (3)3x+2<-1。

  设计意图:通过本题把形如ax+b>k的一元一次不等式与一次函数y=ax+b联系起来,是一元一次不等式与一次函数关系的拓展。学生总结:

  从数的角度看,不等式ax+b>c的解集就是使函数y=ax+b的函数值大于c的对应的自变量取值范围;

  不等式ax+b<c的解集就是使函数y=ax+b的函数值小于c的对应的自变量取值范围。

  从图像上看,解不等式ax+b>k(或

  k(或

  3课堂反馈

  做出函数y=-3x+6的图象,结合图象:

  (1)求方程-3x+6=0的解。

  (2)求不等式-3x+6>0的解集。

  (3)求出-3x+6<3的解集。

  设计意图:用图象法解一次方程和不等式,要让学生反复练习、充分讨论、交流,再加上规范的数学语言表述,让学生在操作、观察、交流等活动中认识函数的本质特点。这里,通过及时的形成性训练,让学生应用所学,形成技能。

  4、总结反思

  最后,教师带领学生回顾、反思本节课的探索过程,总结方法及结论,提升数学思想,掌握数学知识。

  本节课你学习了什么?发现了什么?你收获了什么?你还存在哪些问题?

  设计意图:学生通过小结,体现了教学的民主性。学生通过自我评价及形成性评价,逐渐养成正确的价值观和科学的学习观。同时也养好了良好的反思习惯。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质。数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质,因此让学生归纳并总结出本节课的知识点与数学思想方法显得很有意义。这里,我让学生大胆发言,并适时给予鼓励和总结。

  5、布置作业

  练习册《堂堂练》19.2一次函数(5)。作业习题分为两个层次,基础知识沉淀和综合能力提升。作业的分层布置可以让学生根据自己的水平进行选择,体现了让不同的人在数学上得到不同的发展。尊重了学生的个体差异,让学生在打好基础的同时提高应用知识的能力。

  6、板书的设计:

  知识回顾

  合作探究1知识拓展1

  合作探究2知识拓展2

  课堂反馈总结反思布置作业

  板书的设计让学生对本节课的教学重点一目了然,再现教学情境,以提高学生的记忆效率,达到本节课的教学目标。

  7、教学评价

  课堂教学的评价方法不但有利于学生创新发展,而且有利于教师教学质量的提高。所以本节课我始终关注:学生是否在所给的条件下,积极主动的进行探索,是否能够在活动中大胆尝试并表达自己的想法,发现结论。为此,课上我采用了教师评价、自我评价、学生评价的多元化评价。让这三种评价始终贯穿于教学的全过程,也尊重了学生的个体差异。

  以上是我对这节课的一点看法,望各位老师批评指正,谢谢!

【一次函数说课稿】相关文章:

《一次函数》说课稿(通用12篇)01-15

《一次函数的应用》教学反思01-13

说课稿小班健康说课稿03-02

比的应用说课稿比的认识说课稿11-15

《春》说课稿春说课稿03-28

比的说课稿05-26

说课稿09-08

精品说课稿精品说课稿范文03-28

幼儿说课稿范文 幼儿说课稿子04-18

《认识word》说课稿 认识word的说课稿06-01