圆柱的体积教学设计(优选15篇)
我要投稿 投诉建议

圆柱的体积教学设计

时间:2024-09-17 14:03:37 教学设计 我要投稿

圆柱的体积教学设计(优选15篇)

  作为一位无私奉献的人民教师,常常要写一份优秀的教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么大家知道规范的教学设计是怎么写的吗?下面是小编精心整理的圆柱的体积教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

圆柱的体积教学设计(优选15篇)

圆柱的体积教学设计1

  教学准备

  1.教学目标

  1.加强实践操作,尽量让学生自己动手,亲历圆柱体积的转化过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

  2.加强习题设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。

  3.加强空间观念的培养,突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。

  2.教学重点/难点

  教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱体积。

  教学难点:理解圆柱体积公式的推导过程。

  3.教学用具

  4.标签

  《圆柱的体积》教学设计教学过程

  一、情境激趣,导入新课。

  同学们,让我们先来做一个实验:

  1、师拿一个长方体和一个正方体容器,说说怎样计算它们的体积,接着往正方体容器中倒入一定量的水,然后拿出一个圆柱体准备投入水中让学生观察:有什么现象发生?由这个现象你想到了什么?

  2、提问:你能用一句话说说什么是圆柱的体积吗?(板书课题)

  [设计意图:通过把圆柱投入水中,水面上升,使学生直观感知圆柱体积大小的概念。]二、自主探究,学习新知

  (一)设疑

  1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

  2、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式就好了。

  [设计意图:通过追问大厅内圆柱体积等问题,使学生意识到前面方法的局限性,使其产生思维困惑,激发学生探究圆柱体积计算方法的欲望,从而进入最佳学习状态。]

  3、怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。

  请大家想一想:在学习圆的面积时,我们是怎样把圆转化成已学的图形,来推导圆面积的计算公式的.

  (学生回答后,把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。]

  (二)猜想

  怎样来计算圆柱的体积呢?

  讨论:能不能把圆柱转化成我们已学过的立体图形,来计算它的`体积?

  引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  (三)验证

  1、为了证实刚才的猜想,我们可以通过实验来验证。

  2、学生利用学具分组讨论以下问题:

  圆柱体可以转化成哪种立体图形?

  它又是怎么转化成这种图形的?(小组讨论后汇报交流)

  把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

  3、指名两位学生上台用圆柱体积学具进行操作,把圆柱转化为近似的长方体。

  4、根据学生操作,教师再次课件演示圆柱转化成长方体的过程,并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

  [设计意图:合理运用多媒体技术,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近于长方体”,这里转化思想和极限思想得到应有的体现,同时也渗透了以直代曲的辩证唯物主义观点,发展了学生的空间观念。]

  5、通过上面的观察,小组讨论:

  圆柱与所拼成的近似长方体之间有什么联系?分四人小组展开讨论.

  (1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

  (2)长方体各部分之间与圆柱体有怎样的关系?

  (3)你认为圆柱的体积可以怎样计算?

  生汇报交流,教师根据学生讲述适时板书。

  近似长方体的体积=圆柱的体积

  近似长方体的底面积=圆柱的底面积

  近似长方体的高=圆柱的高

  试着根据圆柱与近似长方体的关系,推导公式:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  用字母表示计算公式:

  V=Sh

  6、同桌相互说说圆柱体积的推导过程。

  思考:

  求圆柱的体积必须具备哪两个条件?

  7、完成做一做:一根圆柱形木料,底面积为75平方厘米,长是90厘米。它的体积是多少?(生练习,展示并评价)

  8、求圆柱体积要具备什么条件?

  [设计意图:动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。]三、实际应用

  1、反馈练习:

  底面积是10平方米,高是2米,体积是( )

  底面积是3平方分米,高是4分米,体积是( )

  2、运用新知,尝试解答实际问题.

  一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

  (1)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?赶紧试一试?

  (2)在解题的过程中要注意单位统一。

  (学生自己完成并汇报解题思路)

  请同学们想一想

  已知圆柱的底面半径和高,求体积

  已知圆柱的底面直径和高,求体积

  已知圆柱的底面周长和高,求体积

  3.深入练习(小组合作)

  (1)一个圆柱形状的零件,底面半径是5厘米,高8厘米。这个零件的体积是多少立方厘米?

  (1)一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米.这个水桶的容积是多少立方分米?

  (2)一个圆柱的体积是62.8立方分米,高是5分米,底面积是多少?

  不会的可以向同学请教

  4、拓展提高:

  一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?

  [设计意图:让学生运用公式解决生活中的问题,使学生认识到数学的价值,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。]四、全课总结:

  通过这节课的学习,你有哪些收获?(生汇报收获)

  [设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。]

  五、学生作业:

  1、练习七的第l题完成在书上。

  2、课本26页试一试。

  3、一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?(选做)

  六、板书设计圆柱的体积

  长方体体积=底面积×高

  圆柱体体积=底面积×高

  V=Sh

圆柱的体积教学设计2

  教学目标

  1、理解圆柱体体积公式的推导过程,掌握计算公式。

  2、会运用公式计算圆柱的体积。

  教学重点

  圆柱体体积的计算。

  教学难点

  理解圆柱体体积公式的推导过程。

  教学过程

  一、复习准备

  (一)教师提问

  1、什么叫体积?怎样求长方体的体积?

  2、圆的面积公式是什么?

  3、圆的面积公式是怎样推导的?

  (二)谈话导入

  同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的.体积)

  二、新授教学

  (一)教学圆柱体的体积公式。(演示动画“圆柱体的体积1”)

  1、教师演示

  把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。

  2、学生利用学具操作。

  3、启发学生思考、讨论:

  (1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)

  (2)通过刚才的实验你发现了什么?

  ①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。

  ②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。

  ③近似长方体的高就是圆柱的高,没有变化。

  4、学生根据圆的面积公式推导过程,进行猜想。

  (1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

  (2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

  (3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

  5、启发学生说出通过以上的观察,发现了什么?

  (1)平均分的份数越多,拼起来的形体越近似于长方体。

  (2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  6、推导圆柱的体积公式

  (1)学生分组讨论:圆柱体的体积怎样计算?

  (2)学生汇报讨论结果,并说明理由。

  因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积×高)

  (3)用字母表示圆柱的体积公式。(板书:V=Sh)

  (二)教学例4。

  1。出示例4

  例4。一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

  2.1米=210厘米

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  2。反馈练习

  (1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?

  (2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?

  (三)教学例5。

  1、出示例5

  例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?

  水桶的底面积:

  =3.14×

  =3.14×100

  =314(平方厘米)

  水桶的容积:

  314×25

  =7850(立方厘米)

  =7.8(立方分米)

  答:这个水桶的容积大约是7.8立方分米。

  三、课堂小结

  通过本节课的学习,你有什么收获?

  1、圆柱体体积公式的推导方法。

  2、公式的应用。

  四、课堂练习

  (一)填表

  底面积S(平方米)

  高h(米)

  圆柱的体积V(立方米)

  15

  3

  6.4

  4

圆柱的体积教学设计3

  教学目标:

  1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

  2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。

  3.情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

  教学重点和难点:

  圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

  教 具:

  圆柱的体积公式演示教具

  教学过程:

  一、复习(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的`图形再计算面积的?

  (2)、我们都学过那些立体图形的体积公式。

  二、积极参与 探究感受

  1、猜测圆柱的体积和那些条件有关。

  2、.探究推导圆柱的体积计算公式。 小组合作讨论:

  (1)将圆柱体切割拼成我们学过的什么立体图形?

  (2)切拼前后的两个物体什么变了?什么没变?

  (3)切拼前后的两个物体有什么联系?

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

  ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高

  字母公式是V=Sh(板书公式)

  2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

  3、要用这个公式计算圆柱的体积必须知道什么条件?

  三、练习 1、填空

  (1)、圆柱体通过切拼转化成近似的 ()

  体。这个长方体的底面积等于圆柱体的()

  这个长方体的高等于圆柱体()

  因为长方体的体积等于()

  ,所以,圆柱体的体积等于()

  用字母表示()。

  (2)、底面积是 10平方米,高是2米,体积是( )。

  (3)、底面半径是2分米,高是5分米,体积是( )。 2讨论:

  (1)已知圆柱底面的半径和高,怎样求圆柱的体积 V= 兀r2 × h (2)已知圆柱底面的直径和高,怎样求圆柱的体积 V=兀(d÷2)2×h

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积 V=兀(C÷兀÷2) ×h

  3、练习:已知半径和高求体积,已知直径和高求体积。

  四、小结或质疑 五、作业

  板书设计:

  圆柱的体积

  长方体的体积=底面积x高 圆柱的体积=底面积x高

  V=Sh

圆柱的体积教学设计4

  学情分析:

  根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学目标:

  1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

  2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

  3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学重点:

  圆柱体体积的计算

  教学难点:

  圆柱体体积公式的推导

  教学用具:

  圆柱体学具、

  教学过程:

  一、复习引新

  1.求下面各圆的面积(回答)。

  (1)r=1厘米; (2)d=4分米; (3)C=6.28米。

  要求说出解题思路。

  2.提问:什么叫体积?常用的体积单位有哪些?

  3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

  二、探索新知

  1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

  2、公式推导。(有条件的可分小组进行)

  (1)请同学指出圆柱体的底面积和高。

  (2)回顾圆面积公式的.推导。(切拼转化)

  3、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  4、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  5、教师演示。

  把圆柱拼成了一个近似的长方体。

  6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  (1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  (2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  (3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积 底面积 高

  圆柱体积 底面积 高

  8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  9、用字母如何表示。

  V=sh

  10、小结。

  圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

  11、教学算一算

  审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

  12、教学“试一试”

  小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

  三、巩固练习

  课后“练一练”里的练习题。

  四、课堂小结

  这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。

圆柱的体积教学设计5

  教学目标:

  1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。

  教学方法:操作法、推理法、讲授法

  教学过程

  一、复习引新。

  我们以前学过哪些立体图形?

  生答:长方体和正方体。

  它们的体积是怎么求的?

  长方体:长×宽×高,正方体:棱长×棱长×棱长。

  二、教学例4。

  1、出示长方体和正方体。

  它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?

  生答:体积=底面积×高,所以长方体和正方体的体积相等。

  2、出示圆柱。

  猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

  生猜测:相等。

  究竟如何,今天我们就一起来研究圆柱的体积。

  板书课题:圆柱的体积。

  问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)

  生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。

  依据是圆可以转化成长方形计算面积。

  3、出示课件。

  回顾圆的面积计算公式是怎样推导的。

  4、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  5、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的'底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  6、教师演示课件。

  把圆柱拼成了一个近似的长方体。

  7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积=底面积×高

  圆柱体积=底面积×高

  9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  10、用字母如何表示。

  11、出示例4。

  现在你知道圆柱的体积与长方体、正方体的体积相等了吗?

  为什么?

  生答:体积相等,都是用底面积×高。

  V=sh

  三、巩固练习。

  1、出示练习七第一题。

  学生直接把答案填写在表中。

  提问:你是根据什么填写的?

  2、练一练。

  这两题,你打算怎么计算?

  生答:不知道底面积,要先算出底面积,再乘高。

  3.14×2×5 = 62.8(平方厘米)

  3.14×(6÷2)×8 = 226.08(平方厘米)

  3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?

  问:这道题和前面做的有什么不同?怎么计算?

  生答:这是求容积的。所以数据是从里面量的。

  4、练习七第2题。

  观察下面的3个杯子,你能看出哪个杯子的饮料多?

  请学生猜一猜。

  请学生列出三道算式。

  (1)3.14×(8÷2)×4

  (2)3.14×(6÷2)×7

  (3)3.14×(5÷2)×10

  问:你能不求出结果直接比较出大小吗?

  生答:第一个杯子的饮料多。

  5、练习七第三题。

  学生独立解答。

  指名说说是怎样算的?

  3.14×3×5×1= 141.3(千克)

  141.3千克<150千克

  答:这个保温茶桶不能盛150千克水。

  四、总结。

  今天这节课你学到了什么?

圆柱的体积教学设计6

  【学习目标】

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  【学习过程】

  一、板书课题

  师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

  二、出示目标

  本节课我们的目标是:(出示)

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  了达到目标,下面请大家认真地看书。

  三、出示自学指导

  认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

  1、圆柱的体积公式是如何推导出来的?

  2、圆柱的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能做对检测题!

  师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

  四、先学

  (一)看书

  学生认真看书,教师巡视,督促人人都在认真地看书。

  (二)检测(找两名学生板演,其余生写在练习本上)

  第20页“做一做”和第21页第5题。

  要求:1、认真观察,正确书写,每一步都要写出来。

  2、写完的同学认真检查。

  五、后教

  (一)更正

  师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

  (二)讨论

  1、看第1题:认为算式列对的请举手?

  【圆柱的体积=底面积×高】

  2、看第2题:认为算式列对的举手?你是怎么思考的?

  3、看计算过程和结果,认为对的举手?

  4、评正确率、板书,并让学生同桌对改。

  今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

  六、补充练习:

  1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

  2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

  3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

  下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

  七、当堂训练(课本练习三,第21页)

  作业:第3、4、7、8题写作业本上

  练习:第1题写书上,第2、6、9、10题写练习本上

  八、板书设计

  课题三:圆柱的体积

  圆柱的体积=底面积×高

  课后反思:

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的'这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱的体积教学设计7

  评价样题:

  学习流程:

  一、创设现实情境,增强探究欲望。

  1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?

  如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)

  看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、亲历建构过程,提高探索能力。

  1、提出问题,大胆猜想

  你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?

  (鼓励学生大胆猜测,说出自己的想法)

  2、回顾旧知,帮助迁移

  同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?

  (演示课件:圆转化成长方形)

  3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  4、小组合作,验证猜想

  下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。

  (出示合作提纲)小组长做好分工,并完成记录表。

  活动记录表

  思考:

  1、圆柱体可以转化成哪种立体图形?

  2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?

  3、怎样用简捷的形式表示你推导出来的公式呢?

  活动过程:

  1、我们用方法,把圆柱体转化成了体。

  2、在这个转化的过程中,变了,没有变。

  3、通过观察比较,我们发现:把一个圆柱体的.底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的(),高就是圆柱体的()。因为,长方体体积=(),所以,圆柱体的体积计算公式是v=()。

  5、全班交流,展示评价。

  评价交流中,借助评价样题。同时课件演示切拼的过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的发现引导学生推导出:

  圆柱的体积=底面积×高,

  用字母表示v = sh。

  7、反馈练习。

  (1)要求圆柱体积,必须知道哪些条件?

  (2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。

  圆柱的体积教学设计 相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案

圆柱的体积教学设计8

  教学目标

  1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

  2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

  3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式进行正确计算。

  教学难点:

  理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

  教学过程:

  一、情景导入:

  1、教师:(出示课件)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?

  学生:

  1.比平日多了两个蛋糕。

  2.两个蛋糕一个大一个小。

  3.蛋糕都是圆柱形的。

  2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?

  学生:蛋糕大,意味着圆柱的体积大。

  3、教师:那你还知道什么是圆柱的体积吗?

  学生:圆柱的体积就是圆柱体占空间的大小。

  4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?

  学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

  教师:板书:圆柱的体积

  二、课上探究

  1、教师:同学们回忆一下我们还学过那些立体图形?

  学生:还学过正方体和长方体。

  教师:它们的体积怎样计算?(多媒体课件出示长方体)有什么共同点?

  学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

  2、猜测圆柱的体积与什么有关

  师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

  生1.圆柱的体积与圆柱的高有关。

  生2.圆柱的体积与圆柱的底面积有关。

  生3.圆柱的体积与圆柱的底面周长有关。

  生4.圆柱的体积与圆柱的底面半径有关。

  3、推导圆柱体积公式

  ①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?

  生:把圆转化成近似长方形来求面积的。

  ②师:我们一起来回忆把圆转化成近似长方形的过程,(课件)

  师:你发现了什么?

  生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。

  ③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?

  生:把圆柱转化成近似的长方体。

  ④师用圆柱体演示转换过程,让学生说怎样转换的。

  生:把圆柱平均分成16份拼成一个近似的长方体。

  ⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。

  课件再次演示把圆柱等分16等份,拼成近似的长方体。

  再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?

  生:分成的份数越多,拼成的图形越接近长方体。

  ⑥师:课件出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的`圆柱比较,发现了什么?

  学生分组讨论,汇报:

  生:长方体的高和圆柱的高相等。

  生:长方体的底面积和圆柱的底面积相等。

  ⑦师:你是怎么想的?

  生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。

  ⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。

  生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径

  师:课件演示长方体的体积=底面积×高

  ⑨师:那么圆柱的体积等于什么呢?

  生:圆柱的体积=底面积×高

  ⑩下面我们再一起回忆一下转化的过程,(课件)

  让学生独立填答案,汇报:

  三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。

  四、学生谈收获。

圆柱的体积教学设计9

  教学内容:

  苏教版义务教科书《数学》六年级下册第15~16页例4、“试一试和“练一练”,第17页练习三第1~2题。

  教学目标:

  1、使学生结合具体情境,探索并掌握圆柱体积的计算方法,初步学会应用公式计算圆柱的体积,并解决相关的实际问题。

  2、使学生在观察、猜想、验证、归纳等数学活动过程中,进一步感受转化思想,积累数学活动的经验,培养应用已有知识探究和解决新问题的能力;培养观察、比较和分析、概括等思维能力,进一步发展空间观念。

  3、使学生主动参与学习活动,培养乐于思考、善于思考的品质;进一步体会探索和获得新知的成功过程,提高学习数学的兴趣和学好数学的自信心。

  教学重点:

  探索并掌握圆柱的体积公式。

  教学难点:

  理解圆柱体积计算公式的推导过程。

  教学准备:

  圆柱体转化成长方体的学具。

  教学构想:

  这部分内容是在学生学算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。例4先比较等底等高的长方体、正方体和圆柱体之间的体积关系,建立圆柱体积公式的猜想;然后把探索圆面积公式的方法迁移过来,通过操作验证圆柱公式的猜想。“试一试’和”练一练”都是让学生应用刚刚学习的体积公式计算圆柱的体(容)积,解决简单的实际问题,巩固加深对公式的理解。

  教学过程:

  一、复习导入

  呈现长方体、正方体和圆柱的直观图。

  提问:认识这些几何体吗?说说各是什么形状。

  你能求出哪个几何体的体积?

  集体交流,教师板书:

  长方体体积=长×宽×高;

  正方体体积=棱长×棱长×棱长;

  长方体(正方体)体积一底面积×高。

  引导:圆柱的体积怎样计算呢?它和我们以前学习的知识有没有联系呢?今天我们就一起来探索圆柱体积的计算方法。(板书:圆柱的体积)

  二、教学例4

  1、观察比较,建立猜想。

  (1)出示例4,指名读题,明确底面积和高都分别相等。

  提问:长方体和正方体的体积相等吗?为什么?

  集体交流得出:长方体和正方体的底面积相等,高也相等;长方体和正方体的体积都等于底面积乘高,所以它们的体积相等。

  (2)提问:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?把你的想法在小组里交流。

  集体交流,引导学生猜想圆柱的体积与长方体、正方体的体积可能相等,也就是可能等于底面积乘高。

  (1)引导:同学们认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?在小组里讨论。

  小组讨论,教师适时提醒:圆可以转化成近似的长方形计算面积,圆柱是否也可以转化成近似的长方体计算体积呢?

  引导得出:圆可以转化成近似的长方形,按同样的方法把底面圆平均分,把圆柱切开,可以拼成近似的长方体。

  (2)提问:你能按这样的想法把圆柱转化成长方体吗?各小组拿出课前准备好的圆柱学具,试着把它拼一拼

  小组合作,动手操作。

  集体交流,部分小组派代表说一说拼的方法。

  得出:把圆柱的底面平均分成16份,切开后拼成了一个近似的长方体。

  (3)启发:如果把圆柱的底面平均分的份数再多一些,比如平均分成32份、64份……切开后拼成的物体会有什么变化呢?同学们可以先在头脑里想象一下。

  让学生说说把圆柱底面平均分成32份、64份……切开后拼成的物体会有什么变化。

  课件演示把圆柱的底面平均分成32份、64份……切开依次拼一拼提问:和你想象的一样吗?拼成的物体有什么变化?这说明什么?

  小结:把圆柱的.底面平均分的份数越多,切开后拼成的物体就越接近长方体。这样无限地分下去,就能拼成长方体。

  3、观察比较,推导公式。

  提问:拼成的长方体与原来的圆柱有什么关系?

  学生交流后,借助示意图小结:拼成的长方体的体积与圆柱的体积相等;拼成的长方体的底面积等于圆柱的底面积,高等于圆柱的高。

  追问:想一想,可以怎样求圆柱的体积?

  根据学生的回答,小结并板书圆柱的体积公式:

  圆柱的体积=底面积×高

  谈话:如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,(出示直观图,并用字母表示底面积和高)你能用字母表示圆柱的体积公式吗?

  指名口答,教师板书:V=Sh。

  4、回顾过程,反思交流。

  提问:回顾圆柱体积公式的探索过程,你知道了什么,有什么体会?把你的想法在小组里交流。

  小组交流后全班反馈。

  小结:推导圆柱体积公式的过程让我们知道,可以利用长方体体积公式推导出圆柱体积公式。推导时可以联系圆转化成长方形的方法,把圆柱切开拼一拼,转化成长方体,发现拼成的长方体和圆柱体积相等,得出圆柱体积的计算方法和长方体、正方体一样,也用底面积乘高。

  5、完成“试一试”。

  指名读题,理解题意。

  学生独立完成,指名板演。

  集体订正。

  提问:计算这个零件的体积应该先算什么,再怎么算?

  说明:根据圆柱体积的计算方法,求体积要用底面积乘高。当底面积未知时,可以先求底面积,再计算体积。

  三、巩固应用

  1、完成练习三第1题。

  出示表格,学生独立填写。

  指名口答,集体订正。

  提问:这里是怎样计算圆柱体积的?

  2、完成“练一练”第1、2题。

  学生独立完成,指名板演。

  集体交流,让学生说出每题的思考过程。

  提问:比较这两题的解答过程,有什么相同点与不同点?

  得出:两题都是求圆柱的体积,都是先求底面积,再用底面积乘高求出体积。但这两题已知条件不同,第1题两小题是已知圆柱的底面直径或半径和高,第2题是已知圆柱的底面周长和高,计算时注意根据不同的条件,用相应的方法先求出圆柱的底面积,再计算圆柱的体积。

  四、课堂总结

  提问:这节课我们学习了什么内容?圆柱的体积公式是怎样推导出来的?你还有哪些体会?

圆柱的体积教学设计10

  一、教学目标

  (一)知识与技能

  用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。

  (二)过程与方法

  经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。

  (三)情感态度和价值观

  通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。

  二、教学重难点

  教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

  教学难点:转化前后的沟通。

  三、教学准备

  每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。

  四、教学过程

  (一)复习旧知,做好铺垫

  1.板书:圆柱的体积。

  问:圆柱的体积怎么计算?体积和容积有什么区别?

  2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)

  【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。

  (二)探索实践,体验转化过程

  1.创设情境,提出问题。

  每个小组桌子上有一个没有装满水的矿泉水瓶。

  教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)

  预设1:瓶子还有多少水?(剩下多少水?)

  预设2:喝了多少水?(也就是瓶子的空气部分。)

  预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)

  2.你觉得你能轻松解决什么问题?

  (1)预设1:瓶子有多少水?(怎么解决?)

  学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。

  教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)

  小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!

  (2)预设2:喝了多少水?

  学生:喝掉部分的形状是不规则,没有办法计算。

  教师:当物体形状不规则时,我们想求出它的体积可以怎么办?

  教师相机引导:能否将空气部分变成一个规则的立体图形呢?

  学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?

  引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)

  小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?

  (3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。

  【设计意图】课本中的例题呈现如下,

  例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。

  3.小组合作,测量计算。

  (矿泉水瓶内直径为6cm)

  教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!

  (1)课件出示:

  一个内直径是( )的瓶子里,水的高度是( ),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是( )。这个瓶子的容积是多少?(测量时取整厘米数)

  (2)四人小组合作:

  A.组长安排好分工:

  要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。

  B.组内互相说一说:倒置前后哪两部分的体积不变?

  矿泉水瓶的容积=( )+( )。

  C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。

  【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。

  4.交流反馈。

  教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。

  瓶中水高度为6厘米的:

  3.14×(6÷2)2×6+3.14×(6÷2)2×13

  =3.14×9×(6+13)

  ≈537(毫升)。

  瓶中水高度为7厘米的:

  3.14×(6÷2)2×7+3.14×(6÷2)2×12

  =3.14×9×(7+12)

  ≈537(毫升)。

  瓶中水高度为8厘米的:

  3.14×(6÷2)2×8+3.14×(6÷2)2×11

  =3.14×9×(8+11)

  ≈537(毫升)。

  瓶中水高度为9厘米的:

  3.14×(6÷2)2×9+3.14×(6÷2)2×10

  =3.14×9×(9+10)

  ≈537(毫升)。

  教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。

  5.解答正确吗?

  教师引导学生回顾反思:刚才我们是怎样解决问题的?

  小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。

  【设计意图】通过回顾解决问题的过程,帮助学生把本环节的数学活动经验进行总结,引导学生在后续的学习中碰到相似的问题也可同样利用转化的思想来解决。

  (三)练习巩固,学以致用

  1.数学书P27做一做。

  (1)学生独立思考,解决问题。

  (2)把自己的想法与同桌说一说。

  (3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?

  求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。

  将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。

  3.14×(6÷2)2×10=282.6(毫升)。

  2.输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?

  (1)请学生计算,并反馈订正。

  (2)反馈要点:

  整个吊瓶容积=图像中空气部分的`容积+还剩下液体的体积。

  根据图象,可以得出在第12分钟吊瓶有80毫升是空的。

  剩下液体的体积=100-2.5×12=70(毫升)。

  即整个吊瓶容积=80+70=150(毫升)。

  【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息 ,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。

  3.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?

  (1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?

  (2)讨论方法:

  A.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。

  B.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。

  (3)用自己认可的方法计算,并进行反馈。

  解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。

  解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。

  (4)反馈小结:可以有不同的转化方法来解决问题。

  【设计意图】不满足于一种方法的转化,展示多种方法,开拓学生的思维。

  (四)全课总结,提升认识

  教师:回忆一下,今天这节课有什么收获?

  教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。

  在解决问题时,主要要弄清楚转化前后两部分之间的关系。

  【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性。

圆柱的体积教学设计11

  一、复习导入

  1、回顾上节课内容,提问:圆柱的特征,圆柱的表面积计算方法。

  导入:这节课我们学习圆柱的体积、

  2、想一想,提问:什么叫做体积?我们学过哪些物体的体积计算公式?

  (物体所占空间的大小叫做体积、学过长方体正方体的、)

  它们的计算公式是什么?可以归纳为:

  长(正)方体的体积===底面积*高

  3、想一想:圆面积计算公式的推导过程、

  (把圆面积转化为一个近似的长方形的面积,从而推导出圆面积的计算公式)

  那么,能不能把圆柱转化为我们已学过的图形来计算它的体积?

  二、新授:

  叙:以上研究圆面积计算公式的方法叫做割补法,这种方法也适用于推导圆柱体积的计算公式、下面请同学们打开课本看书自学。

  演示并提问:

  (1)拼成的长方体的体积与圆柱的体积有什么关系?

  (2)拼成的长方体的底面积与圆柱的哪部分有关系?有什么关系?

  (3)拼成的长方体的高与圆柱的哪部分有关系?有什么关系?

  总结:长方体的'体积与圆柱的体积相等,长方体的底面积与圆柱的底面积相等,长方体的高与圆柱的高相等。

  因为:圆柱的体积===长方体的体积

  长方体的体积===底面积*高

  ↓↓↓

  所以:圆柱的体积===底面积*高

  用字母表示为:v==sh

  运用以上公式,完成练习题、

  (注意:单位要统一,要认真审题,认真计算、)

  动脑筋,思考以下几个问题:

  已知如下条件,如何求圆柱的体积?

  (1)底面积s、高h→→体积v==

  (2)底面半径r、高h→→体积v==

  (3)底面直径d、高h→→体积v==

  (4)底面周长c、高h→→体积v==

  强调:圆柱的体积v=sh=rh,在没有告诉底面积和高时,要先找底面半径和高,应用v=rh去计算。

  三、巩固练习(填表)

  hvs=20平方分米

  4分米

  r=5厘米

  10厘米

  d=8分米

  6分米

  c=12、56米

  2米

  四、课堂小结

  同学们,通过这堂课的学习你知道了些什么?谁来说一下。

  回答得非常好,下去以后可以应用所学知识去解答一些实际问题。

  板书设计:

  圆柱的体积

  圆柱的体积===底面积*高

  ↓↓↓

  长方体的体积===底面积*高v==sh

  作业设计:完成习题

圆柱的体积教学设计12

  教学内容:

  义务教育教科书北京师范大学出版社小学数学六年级下册第8-9页。

  教材分析:

  本节课的内容是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体的体积计算方法的基础上学习的,长方体和正方体的体积计算方法“底面积×高”对探索圆柱的体积计算方法有正迁移作用。本节课的重点在于引导学生经历“猜想与验证”的探索过程,在探索中理解、掌握圆柱体积的计算方法,体会“类比”“把未知问题转化为已知”等思想方法,并积累研究图形的经验。

  学习目标:

  1、通过具体情境观察、实物感知等活动,感受物体体积的大小,发展空间观念。

  2、通过圆柱与长方体的“类比”,经历”猜想与验证“圆柱体积计算方法的过程,体会”类比“的数学思想方法。

  3、掌握圆柱体积的计算方法,能正确计算圆柱的体积,能运用圆柱体积计算方法解决简单的实际问题。

  教学重难点:

  重点:引导学生经历“猜想与验证”的探索过程,在探索中理解和掌握圆柱的体积计算方法。

  难点:体会圆柱的体积的探索过程,理解计算方法,积累研究经验。

  教学准备:多媒体课件、演示的教具。

  教学过程:

  一、创设情境,观察思考。

  师:在生活中有很多物体的形状是圆柱体的,比如建筑物的柱子,喝水的杯子。

  笑笑:这么粗的柱子需要多少木材呢?

  淘气:这个杯子能装多少毫升水呢?

  师:思考笑笑和淘气分别提出的问题,你能帮助他们解决这两个问题吗?

  学生思考后发现:这两个问题实际上都需要求出圆柱的体积。

  二、回顾旧知,类比猜想。

  1、回顾:

  师:在解决新问题之前,先来回顾一下,我们都学习过哪些有关体积的`知识呢?

  回忆长方体、正方体的体积计算方法:底面积x高。

  2、猜想:

  师:请你们来猜一猜?圆柱的体积和什么有关呢?它的计算方法可能是怎样的呢?

  引导学生说说自己的猜想和猜想的依据:

  生:圆柱和长方体正方体一样,也有底和高,它的体积可能与底面积和高有关;

  生:圆柱与长方体有相似性,都是直直的,上下一样粗,所以从”长方体的体积=底面积x高”猜想“圆柱的体积=底面积x高”。

  师:真的是这样吗?让我们一起来验证吧!

  三、动手操作,验证猜想。

  (一)直观感知

  用几枚一元硬币叠成圆柱形,底面积不变,高增加,体积随之增加;再用几枚一分硬币叠成圆柱形,对比发现,当高相等时,底面积变小,体积也随之变小。

  师:通过刚才的实验,我们发现圆柱的体积与它的底面积、高有关。

  但是圆柱的体积是不是就等于底面积乘高呢?那我们还需要进一步验证。

  (二)等积变形

  1、回忆圆的面积推导过程。

  把圆平均分成若干个小扇形,再拼成一个近似的平行四边形,分的份数越多,拼成的图形越接近于长方形。这样我们就把计算圆的面积转化成计算长方形的面积。

  思考:既然圆能变成长方形,那圆柱能变成长方体吗?

  2、演示圆柱到长方体的变化过程。

  将蛋糕分别8等分、16等分,再重新拼起来,可以得到近似的长方体。

  课件演示:把实物圆柱的切拼过程重新用课件演示:将圆柱分别16等分、32等分、64等分。引导学生观察拼出的图形的变化,发现:平均分的份数越多,拼起来就越接近长方体。

  想象推测:如果我们一直分下去,把这个圆柱进行无穷等分,再拼起来,得到的就是一个长方体。

  这样我们就把圆柱转化成了长方体,把计算圆柱的体积转化成了计算长方体的体积。

  3、推导圆柱的体积计算方法。

  师:观察转化后的长方体和原来的圆柱,你有什么发现?

  把圆柱拼成长方体后,形状变了,体积没变,长方体的体积就等于圆柱的体积,拼成的长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

  因为长方体体积等于底面积x高,圆柱体积也等于底面积x高。

  用字母表示:V=Sh

  4、小结:通过验证,证明我们一开始的猜想是正确的,圆柱的体积就等于底面积乘高。

  四、尝试应用,解决问题。

  1、笑笑了解到一根柱子的底面半径为0.4m,高为5m,你能算出它的体积吗?

  分析:求体积需知道底面积和高,所以要先用3.14x0.42求出底面积。

  提醒学生注意体积单位名称是立方米。

  2、从水杯里面量,水杯的底面直径是6cm,高是16cm,这个水杯能装多少毫升水?

  分析:已知底面直径是6cm,需要先计算出半径,再求出底面积。提醒学生要换算成容积单位。

  小结:有时候题目并没有直接给出底面积的数据,这时候就需要根据不同的已知条件来列式计算。

  五、巩固练习:

  课本“练一练”第1—3题。

  六、回顾总结,交流分享。

  通过今天的学习,你学到了什么呢?和同学或家人分享你的收获。

  师:我们学会用转化的方法,将圆柱的体积转化成长方体体积,这样就可以用以前学过的知识来解决新问题了。我们还可以根据图形之间的联系先进行猜测,然后想办法验证自己的猜测。这些都是解决数学问题的好方法。

  七、课后实践

  寻找身边的圆柱形的物体,量一量,计算它的体积。

  板书设计:

  圆柱的体积

  《圆柱的体积》教学设计《圆柱的体积》教学设计《圆柱的体积》教学设计长方体的体积=底面积x高

  圆柱体积=底面积x高

  V=sh

圆柱的体积教学设计13

  一、教学对象及学习内容特点分析:

  圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。

  二、教学目的:

  学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。

  学生能应用圆柱体积公式进行圆柱体积的计算。

  学生能利用知识之间相互"转化"的思想探索解决新的问题。

  三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。

  四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。

  五、教学过程的设想和点评

  教师的教学行为学生的学习行为点评

  第一阶段:创设情景,设疑引趣。

  教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。

  提问:小组讨论寻找解决这两个圆柱体积大小的方法。

  1、学生小组讨论解决的方法。

  2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。

  通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。

  第二阶段: 自主探究。概括规律

  1、电脑提供学生探索资源:

  (1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。

  (2)把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。

  2、学生反馈自学内容,师生共同导出圆柱的体积公式V=Sh1、学生打开电脑"自能学习"中的"寻方法",有选择地看学过的平面图形的面积公式和立体图形体积公式的导出过程,从中找到推导圆柱体积公式的方法

  2、学生通过观察圆柱公式的推导过程。

  3、小组讨论填写实验报告。

  4、师生导出圆柱的体积公式后,学生自学课本例题,并完成例4内容。通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。在自学的过程中教师通过监控密切观察着学生的学习情况,发现问题及时解决。

  圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。

  第三阶段:拓展公式,自能训练。

  1、公式拓展。

  在日常生活中,圆柱的.底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?

  2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。

  3、质疑

  1、学生可根据已学的"圆的面积"公式导出。

  (当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。

  2、判断。并说明原因

  (1) 一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。

  (2) 一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。

  (3) 一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。 列式是:3.14×22×3

  1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学

  2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。

  第四阶段:反馈学习、应用提高。

  1、提出练习要求:先做"巩固"练习,有余力的再做"提高"练习。

  2、小结练习情况,及时表扬对而快的同学及小组

  3、回应开头,解决"浆糊笔"和"转笔刀"争论的问题。学生在电脑上完成。

  1、赛车游戏:看谁跑得快。

  (1)圆柱的底面积是15平方米,高是3米,体积是( )立方米。

  (2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是( )平方厘米。

  (3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷( )立方米。

  (4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是( )分米。

  2、提高练习。考你智慧:看谁攀得高。

  (1)一个圆柱,它的底面直径4厘米,高是3米,体积是( )立方厘米。

  (2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是( )立方分米。

  在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。

  六、归纳总结、自我评价。

  1、提出要求,学生谈收获。

  2、总结本节情况。 谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。

  七、对教学过程的设想和点评:

  新课程标准注重小学生对周围世界与生俱来的探究兴趣和需要,在小学阶段,学生的知识积累与思维能力较为有限,强调用符合小学生年龄特点的方式学习,提倡课程贴近小学生的生活,这节课从学生身边学习用品"卷笔刀"和"浆糊笔"的入手,通过拟人的方式,由它们上学过程中引起的争论导出学习的内容,激发学生学习的积极性。这样在教学进程中安排好相关的情景组织学生参与其中,亲历过程,自主地开展活动,通过看、做、玩、想等方式,让学生既学会知识与技能,又培养智能、情感态度与价值观,促进学生科学素养的形成。

  新课标还积极倡导让学生亲身经历以探究为主的学习活动,培养他们的好奇心和探究欲,使他们学会探究解决问题的策略,为他们终身的学习和生活打好基础。这是一节在网络环境下开展的探究型数学课,引入后,教师则大胆放手,营造了一个开放的探究空间,通过学生小组讨论寻找比较圆柱大小的方法,引导学生通过自主、合作探究这种学习方式进行实践活动,观察由圆柱转变成已学过长方体的过程,在观察中相互启发,共同提高,形成共识后并加以记录。再将大家的记录结果对比、讨论、从而得出结论:圆柱的体积=转变成的长方体的体积,从而导出圆柱的体积公式V=SH。在这一过程中,教师以学生的发展为本,关注每一位的发展,珍视每位学生的探究体验及独特见解,在学生探究结果的表述过程中,对同一个问题,不同的人可以得出不同的结论,他们通过互相交流互相讨论,思维更是得到发展与创新。不仅激发了每一位学生主动参与探究实践活动,更让学生在探究中学会合作、懂得思考、大胆发表自己的独特见解,更学会倾听、尊重他人的意见,从而实现互帮、互学共同提高,并在探究中发现、学习,激发学生学习的兴趣,培养了实践的能力。

  网络环境下的教学方式不仅改变了以往教师满堂灌的现象,在拓宽学生知识面的同时,更培养了学生搜集信息、处理信息并进行合理解释的能力,大大地激发了学生自主学习的积极性,学生的创新意识日渐增强,真正实现了利用信息技术为教学内容服务。

圆柱的体积教学设计14

  一、复习。

  1、听算。

  1π——10π、16π、25π的值。

  2、口答(开火车)112——202

  二、新授。

  (一)圆柱体体积的推导。

  1、师:我们学习过哪些立体图形?

  生:长方体、正方体。

  师:长方体体积怎样求?

  生:“长方体体积=长×宽×高”

  师随即板书。

  师:正方体体积怎样求?

  生:“正方体体积=棱长3”

  师随即板书。

  师:长方体、正方体一个通用的公式是怎样的?

  生:长方体或正方体体积=底面积×高。

  师随即板书。

  师:用字母表示为v=sh

  2、师:今天我们来学习和研究“圆柱体的体积”,板书课题。

  师:能不能把圆柱体转化成我们学过的长方体或正方体来计算呢?

  生:能。

  师:怎样转化?

  生:

  师:大家先想一想,学习计算圆面积时是怎样把圆变成已学过的图形再计算面积的?

  生:把圆平均分成许多小扇形,再拼成一个近似的长方形,最后计算出长方形的面积,也就得出了圆的面积。

  师:怎样把圆柱体转化成我们学过的图形来计算出它的体积呢?大家讨论讨论。

  师:谁能把讨论的情况说一说?

  生:把圆柱体从上到下平均分成许多小扇形再切开,然后拼成一个长方体或正方体,最后计算出长方体的体积,也就得到圆柱体的体积。

  3、师:谁愿意跟老师合作演示这一过程?

  4、师生一起演示教具。并由学生展示。

  5、师:同学们看了演示过程回答4个问题:

  a、什么变了?什么没变?

  生:形状变了,体积没变。

  师:b、长方体的底面积与圆柱的底面积有何关系?

  生:相等。

  师:c、长方体的高与圆柱体的高又有何关系?

  生:相等。

  师:d、长方体的体积=底面积×高,那么圆柱体的体积怎样计算?

  生:圆柱体的体积=底面积×高。

  师:读、背各一次。

  师:用字母v柱表示圆柱的体积,s表示底面积,h表示高,它的字母公式为:

  v柱=sh,大家读、背、写各一次。

  (二)圆柱体体积公式的应用。

  1、师:要求圆柱体的体积需要知道哪些条件?

  生:需要知道底面积和高。

  2、师:请读例4,一根圆柱形钢材,底面积是50cm2,高是21m,它的体积是多少?

  师:用手势表示有几个条件,要求几个问题?谁能求出它的体积?

  生:2.1m=210cm

  50×210=10500(cm)3

  师:还可以怎样表示?

  生:50×210÷1000=10.5(dm)3

  师:还有别的表示法?

  生:50×210÷1000000=0.0105(m)3

  师:为什么要分别除以1000和1000000?

  生:

  师:相邻体积单位的进率为1000,面积单位100,长度单位10,并且是低级单位化成高级单位用除法计算,三个结果任选一个即可。全体同学一起说答。

  3、师:想一想,如果已知圆柱底面的半径r高h,怎样求圆柱的体积?

  生:用r2×π×h等于圆柱的体积。

  师:随即板书v柱=πr2h练习一题

  已知r=5cm h=10cm求v柱,第一名演板。

  师:谁再出一道类似的`题,让大家练习?

  生:r=10cm, h=5dm,求v柱。

  师生一起评点

  4、师:如果告诉直径和高怎样求体积呢?

  生:用直径÷2得半径,再用半径的平方乘以π乘以高。

  师随即板书(d÷2)2πh=v柱

  师:请读例5,一个圆柱形水桶,从里面量底面直径是20cm,高是25cm,这个水桶的容积是多少立方分米?

  师:用手势表示有几个条件,要求几个问题?

  师:怎样求?

  生:(20÷2)2×3.14×25

  =100×3.14×25

  =314×25

  =7850(cm)3

  =7.85(dm)3

  答:它的容积有7.85dm3。

  5、师:我们已经会求圆柱体的体积了,现在考考你们,请做p37,1、2,前两名的演板。(学生演板后师生评点)。

  三、巩固并拓展

  1、师:还有可能告诉哪些条件求圆柱体的体积?

  生:还有可能告诉底面周长和高求体积?

  师:怎样求?

  生:周长÷π=直径,直径÷2=半径,半径的平方乘π乘高。

  师随即板书:(c÷π÷2)2πh=v柱

  师:谁出题让大家练习?

  生:c=12.56cm h=5cm。

  师生一起评点:

  (12.56÷3.14÷2)2×3.14×5

  =12.56×5

  =62.8(cm)3

  2、师:还有可能告诉哪些条件,求圆柱体的何种?

  生:还有可能告诉,周长和侧面积,求体积。

  师:怎样求?大家讨论。

  生:侧面积÷周长=高,周长÷π÷2=半径

  用半径的平方乘π乘h等于体积。

  师随即板书:

  s侧÷c×(c÷π÷2)2π=v柱。

  师:谁能出题大家练习?

  生:s侧=12.56cm2,c=12.56cm,求体积。

  师生一起评点:

  12.56÷12.56×[(12.56÷3.14÷2)2×3.14]

  =1×[12.56]

  =12.56(cm)3

  3、师:还有可能告诉哪些条件求圆柱体的体积?

  生:告诉s侧和高,求体积。

  师:怎样求?大家讨论。

  生:s侧÷高=周长,用周长÷π÷2等于半径,用半径的平方乘π乘高等于体积。

  师随即板书:

  (s侧÷h÷π÷2)2×3.14×h=v柱

  师:谁出题大家练习?

  生:s侧=28.26cm2,h=1dm,求体积。

  师生一起评点。

  (28.26÷10÷3.14÷2)2×3.14×10

  =0.452×3.14×10

  =20.25×3.14×10

  =635.85(cm)3

圆柱的体积教学设计15

  一、课前系统部分

  (一)、课标分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。

  (二)、教材分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

  (三)、学生分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

  (四)、教学目标

  知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

  过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

  (五)、教学重难点:

  1、教学重点:掌握圆柱体积的计算公式。

  2、教学难点:圆柱体积计算公式的推导。

  (六)、教学策略

  介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。

  (七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。

  二、课堂系统部分——教学过程

  (一)、创设情境,引起猜想:

  1、激发兴趣:圆柱体转化成近似长方体。

  课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?

  生:体积、高。

  (设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)

  师:揭示课题:圆柱的体积。

  (二)、推导圆柱体积计算公式

  师:怎样用我们已有的知识来计算圆柱的体积?生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?

  师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。

  我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就

  学生回答:就越接近于长方体了。

  师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)

  师:通过观察,你知道了什么?

  生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  师课件展示:点击后出现:长方体的.底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。

  (三)、练一练:

  1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?

  生:完成后小组内交流。

  2、师课件出示:判断题

  一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少?

  师:出示下面几种解答方案,让学生判断哪些是正确的。 ①50×=105(立方厘米)

  ②米=210厘米,50×210=(立方厘米)③ 50平方厘米=平方米,×=(立方米)④ 50平方厘米=平方米,×=(立方米)

  生:小组讨论,学生汇报并说出理由。

  师:点击出现:“√” 。

  师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。

  (四)、两个圆柱体积计算公式的比较。

  师课件展示:点击出现圆柱,再点击出现半径r、高h如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢?师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。

  师:说说这两个体积计算公式之间有什么联系呢?生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)

  小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?

  生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。

  (五)、拓展训练练习一:填表

  师课件展示,生小组交流完成。练习二:计算圆柱的体积师课件展示,生小组交流完成。

  练习三:师课件展示:根据圆柱的体积公式计算一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?

  生小组交流完成。

  (六)、小结

  通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。

  (七)、板书设计圆柱的体积

  圆柱的体积=底面积×高=Sh=πrh

  三、课后系统部分——教学后记

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上十分注重从已知知识和方法入手,让学生经历“转化图形、建立联系、推导公式”的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

【圆柱的体积教学设计】相关文章:

“圆柱的体积”教学设计06-05

圆柱的体积教学设计09-17

《圆柱的体积》教学设计08-31

《圆柱的体积》教学设计06-03

《圆柱的体积》教学设计【优选】08-31

“圆柱的体积”教学设计常用11-18

《圆柱的体积》教学设计15篇06-27

圆柱体积教学设计05-31

《圆柱的体积》教学设计3篇【精华】12-23