[合集]《比的基本性质》教学设计
作为一位杰出的老师,总归要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。教学设计应该怎么写呢?以下是小编帮大家整理的《比的基本性质》教学设计,仅供参考,大家一起来看看吧。
《比的基本性质》教学设计1
教学内容:课本第50页例2;练一练;《作业本》第22页。
教学目标:
1、理解并掌握比的基本性质,知道最简单的整数比,会根据比的基本性质将比化成最简单的整数比。
2、培养学生自主迁移、自主构建知识的能力。
教学重点:比的基本性质和化简比
教学过程:
一、准备练习:
1、求下列各比的比值。
12:201:1:1.5:2.5
2、在()里填上适当的数。
⑴=()()=():()
⑵====
(第1题:分数与除法的关系;第2题:分数的基本性质)
3、复习比与除法、分数的关系。(完成上堂课的表格)
二、教学新课:
1、引入。
分数基本性质是怎样的?除法的商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的呢?
(1)学生试着叙述。
(2)反馈小结。
分数基本性质、除法的商不变性质中的`都有0除外,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?
2、看书验证自己的猜想。P50页。
3、什么是最简单的整数比?
(1)下面哪些是整数比?哪些整数比最简单?为什么?
6:1012:210.3:0.40.25:1
3:54:73:4:
(2)教师小结:
像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为最简整数比,化成最简整数比简称化简比。
4、教学例2。化简比。
(1)应用比的基本性质可以把比化成整数比。
自学课本P50、51例2、例3)
(2)小结:
①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。
②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。
(3)试一试。
三、巩固练习:练一练
四、小结:
今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)
五、《作业本》第22页。
《比的基本性质》教学设计2
教学内容:比例的基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:比例的基本质性。
教学难点:发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
2.4:1.6和60:40
二、探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的外项和内项。
如::=:
外内内外
项项项项
2.比例的.基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:
两个外项的积是×=0.6
两个内项的积是0.5×1.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
3.填一填。
(1)=
()×()=()×()
(2)0.8:1.2=4:6
()×()=()×()
(3)4×5=2×10
4:()=():()
=
4.做一做。
完成课文中的“做一做”。
5.课堂小结
(1)说一说比例的基本性质。
(2)你可以用什么方法来判断两个比能否组成比例?
三、作业
完成课文练习六第4~6题。
课后记:
《比的基本性质》教学设计3
比例的意义和基本性质导学案
教学内容:比例的意义和基本性质教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。教学重点难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。教学过程:
一、趣味导课
1、谈话
师:大家或许曾在电视节目中看到过这样的情节:一个侦探,只要发现了罪犯的脚印,就可估计出罪犯身材大约的高度,这是为什么呢?其实是因为在我们人体上存在着许多有趣的比!例如:将拳头翻滚一周,它的长度与脚的长度的比大约是1:1,身高与双臂平伸长度的比大约也是1:1,身高与胸围长度的比大约是2:1……那么这些有趣的比还有什么用处呢?比如:你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。像这些生活中的例子,实际上就是用这些有趣的比去组成一个个的比例来进行计算的。这节课我们就一起来学习“比例的意义和基本性质”。板书课题
2、复习
(1)、什么叫做比?什么是比值?(2)、怎样求比值?(3)、求比值
6:10
9:15
1/2:1/3
6:4
:
学生求出各比的比值后,再提问:观察一下,这几个比的'比值有什么特点?因为这两个比的比值相等,所以我们可以用一个符号连起来。板书:像这样表示两个比相等的式子叫做比例
二、探究新知
(一)深入探讨:(1)比例有几个比组成?
(2)是不是任意两个比都能组成比例?
(3)判断两个比能不能组成一个比例,关键要看什么?
(二)做一做出示课件中的做一做
(三)教学比例的基本性质
1、自学比例各部分的名称。
教师:下面我们就来看看组成比例的四个数分别被叫做比例的什么?(学生看书第二页中间内容后回答)随着学生的回答教师出示:
: = 60: 40
└-内项-┘
└------外项-------┘
师:那下面谁能来说一说这个比例当中各部分的名称呢?()
2、研究比例的基本性质及应用。(1)小游戏——我是诸葛亮
三、系列训练
1、应用比例的意义和基本性质判断3:4和6:8,:2和7:10能不能组成比例。
先一起做第一个,然后指名回答第二个。
2、把下面的等式改写成比例:(能写几个写几个)16 × 3 = 4 × 12学生写后根据学生回答教师板书:16:4=12:3
4:16=3:12 16:12=4:3
4:3=16:12 3:4=12:16
12:16=3:4 3:12=4:16
12:3=16:4
四、总结归纳
1、“比”和“比例”两个概念有什么区别?引导学生从意义上、项数上进行对比。
最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
2、比例的基本性质是什么?应用比例的基本性质可以做什么?课堂总结:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。大家可以想想这句话的意思来联想一下“解比例”的做法。
板书
比例的意义和基本性质
表示两个比相等的式子:=10:6第一种—— 12:16=112 :2 16:4=20 : 5因为16×5=80 4×20=80所以16:4=20:5
第二种—— 3:4和6:8
因为3×8=24 4×6=24 3×8=4×6
所以3:4 = 6:8
《比的基本性质》教学设计4
第一课时比例的意义
教学内容:
比例的意义(教材第40页的内容)
教学目标:
1、理解和掌握比例的意义。
2、了解比和比例的区别与联系。
2、能用比例的意义判断两个比能否组成比例。
教学重难点:
1、认识比例,理解比例的意义。
2、在已有知识的基础上,结合实例引出新的知识。
教具准备:
情景图、多媒体课件、习题卡。
教学过程:
一、导入
出示课题:比例
看到课题你想到了以前学过的什么知识?(生1,生2等回答)
我们已经了解了比的这些知识,请做下面练习。
求下面各比的比值。
18:453:52.7:4.5
求完比值你觉得哪些比有联系?
【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】
“例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?
师:相机板书:3:5=2.7=4.5?
今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?
板书完整课题:比例的意义
二、揭题示标。
预设:生:1、比例的意义是什么?
生:2、比例的意义有什么作用?
(师趁机板书在黑板右上角)
【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】
本节课我们就来完成这两个目标:
三、自主探索
出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?
【设计意图:对学生同时进行思想品德教育和爱国教育】
生各抒己见。
你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。
自学指导:
1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。
2、发现了什么有趣的现象?
3、把你的发现尝试用算式写下来。
(5分钟后,期待你精彩的分享)
【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】
(二)自学
学生认真看书自学,教师巡视,督促人人都在认真地思考。
(三)汇报分享
谁愿意把你的结果和大家分享?师相机板书
(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…
原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。
我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。
【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】
师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。
生:…
师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。
出示“比例的意义”概念
擦去开始板书中的“?”并把比例可用分数形式表示板书出来
【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】
师:你能说一说组成比例要具备哪些条件吗?
生:…
师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?
生:…
【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】
四、当堂检测(牛刀小试)
下面各比能组成比例吗?你是怎样判断的?请写出计算过程。
(1)3:7和9:21
(2)15∶3和60∶12
五、当堂训练:
1、把下面的式子进行归类:
(5)72:8=3X3(6)3.6:6=0.6
比:()
比例:()
思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?
2、判断:
(1)、有两个比组成的式子叫做比例。()
(2)、如果两个比可以组成比例,那么这两个比
的`比值一定相等。()
(3)、比值相等的两个比可以组成比例。()
(4)、0.1∶0.3与2∶6能组成比例。()
(5)、组成比例的两个比一定是最简的整数比.()
六、拓展提升(思绪飞扬)
1、写出比值是7的两个比,并组成比例。
2、12的因数有(),从12的因数中挑选4个数组成比例是()。
3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?
设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握
七、全课总结
今天这节课你有什么收获?
八、课堂作业
第43页第2、3题。
九、抽查清。(每组4号同学完成)
判断下面每组中的两个比能不能组成比例。
30:5和48:812:0.4和3:5
十、板书设计
比例的意义
表示两个比相等的式子叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
十一、教学反思:
本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:
1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。
2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。
3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。
4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。
5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。
《比的基本性质》教学设计5
教材分析
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析
在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的`方法;在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点
重点:学生掌握比的基本性质,并正确地化简比。
难点:灵活应用比的基本性质化简比。
教学过程
一、情景激趣,提出问题
1、出示例3的表格
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
二、小组合作,探究新知
1、讨论一:如果第五瓶溶液的质量和体积的比值也是4/5,你觉得它的质量和体积的比会是几比几呢?为什么?
2、讨论二:可以写出多少个比值是4/5的比呢?
3、讨论三:小组用比的基本性质解释一下,第一瓶、第二瓶、第四瓶以及第五瓶液体为什么分为一类/这些比中哪一个最简洁?
三、尝试运用,解决问题
先尝试独立完成“练一练”,再在小组内交流方法。
四、全课总结
师:通过这节课的学习,你有什么收获?
《比的基本性质》教学设计6
教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的基本性质
教学准备:PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的.方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?
生发表见解。
二、自主合作探索规律
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
《比的基本性质》教学设计7
教学内容:教科书第43页例4,“试一试”,“练一练”和练习十的1~4题
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质。
3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐
教学重点:
理解并掌握比例的基本性质。
教学难点:
探究发现比例的基本性质。
教学准备:多媒体
教学过程:
一、导入
1、找找比比:
(判断下面的比,哪些能组成比例?把组成的比例写出来。)
3:518:300.4:0.21.8:0.9
5/8:1/47.5:32:89:27
学生独立完成,重点说说判断过程。
2、今天我们继续研究比例的有关知识。
二、新授
1、认识比例各部分的名称
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3:5=18:30学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3:5=18:30
内项
外项
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30
(4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?
2、教学例4
(1)理解题意,信息搜索:
提问:你能根据图中的`数据写出比例吗?
(2)、学生写不同比例:
引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?
(3)、学生探索规律
学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)
(4)、写比例,验证规律:
是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。
(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。
4、练习:“试一试”判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。
提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比
能不能组成比例吗?
三、巩固练习
1、做“练一练”
使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
5:3=():64:()=():5
3、做练习十第1、2题
四、小结
通过今天的学习,你有哪些收获?
交流
五、作业
完成《练习与测试》相关作业
《比的基本性质》教学设计8
一、教学目标
1.经历探索分数基本性质的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1.教师讲故事。
猴山上的猴子们最喜欢吃猴王做的香蕉饼了。有一天,猴王做了三块大小一样的香蕉饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友们,你知道哪只猴子分得多吗?
讨论:三只猴子一起分到了三块大小一样的香蕉,它们都觉得自己分得的最多。经过仔细观察和比较,发现其实每只猴子分得的香蕉数量都是一样的。
引导:聪明的猴王想出了一个聪明的办法来满足小猴子们的要求并且公平分配食物。他决定让每只小猴子依次从一堆食物中取一份,直到食物被取完为止。这样每只小猴子都有机会先后选择食物,确保了公平分配。这个方法既满足了小猴子们的要求,又让他们学会了合理分享。
2.组织讨论。
(1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等的。也就是说,三只猴子分得的饼的分数是14、28和312,它们之间是相等的关系。虽然它们平均分的份数和表示的份数不同,但是它们的大小是相等的。
(2)猴王将三块大小一样的饼分给小猴子一部分后,剩下的部分大小是否相等呢?你还能找出另一组相等的分法吗?通过仔细观察我们可以发现:2/3=4/6=6/9。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并简化分数。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
(二)、比较归纳,揭示规律
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢?怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)学生们对几组分数进行了观察,发现分子和分母的变化规律是同时乘以相同的数。经过归纳总结,他们得出结论:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以
相同的数)
(5)分数的分子和分母之间存在一个共同的因数,当分子和分母同时除以这个因数时,得到的新分数与原分数大小相同。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3.出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
(三)、沟通说明,揭示联系
通过举例,分数的基本性质与商不变性质之间有密切的联系。在分数中,分子和分母之间存在着除数与商的`关系,分子除以分母就得到分数的值。当我们进行分数的乘除运算时,商不变性质起着重要作用。商不变性质指的是在乘除运算中,如果被乘数或被除数同时乘(除)以(除以)一个相同的数,那么乘积(商)不变。举例来说,如果我们有一个分数$frac{a}{b}$,其中$a$和$b$分别是整数,那么当我们将分子和分母同时乘以相同的数$c$,得到的新分数为$frac{ac}{bc}$。根据商不变性质,这两个分数是等价的,即它们代表同一个数值。这说明分数的基本性质中的分子和分母可以同时乘以一个相同的数,不改变分数的值。因此,分数的基本性质与商不变性质共同构成了分数运算中的重要规律。在进行分数的乘除运算时,我们可以利用商不变性质来简化计算,保证结果的准确性。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
(四)、多层练习,巩固深化
1.口答。(学生口答后,要求说出是怎样想的?)
2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主体,教师是引导和组织学习的助手。在数学课堂上,教师的作用是激发学生的学习兴趣,引导他们积极参与到数学学习中来。为了实现这一目标,教师需要深入了解学习方法,建立起一种以探究为核心的学习模式。教师应该激发学生的学习动力,为他们创造充分的学习机会,帮助他们通过自主观察、讨论、合作、探究来真正理解和掌握数学知识和技能,充分发挥学生的主动性和创造性。一个重要的特点是设计学习方法,从大胆猜想、实验感知、观察讨论到总结归纳,都是为了促进学生自主探究和合作学习而设计的。
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,我们需要确保题目紧扣重点,设计新颖、多样,难度层次递进。首先,前两题作为基础练习,旨在帮助学生理解概念,全面了解他们对新知识的掌握情况。第三题则是在前两题基础上,巩固练习,加深对所学知识的理解。最后一题通过游戏形式,旨在加深学生对分数基本性质的认识,激发学生学习兴趣,活跃课堂气氛。这样设计不仅能照顾到学生的思维发展过程,同时也能拓宽学生的思维空间,真正做到学以致用。
在教学过程中,我们应该注重引导学生进行多种方法的验证,而不仅仅局限于老师提供的几种方法。数学教学的目的不是仅仅教会学生问题的答案,更重要的是教会他们思考问题的方法和途径。因此,当让学生验证结论的正确性时,应该给予他们更大的自由度,让他们自己去寻找多种途径进行验证。这样不仅可以激发学生的求知欲和探索欲,也有助于培养他们的创新能力和解决问题的能力。
《比的基本性质》教学设计9
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的`分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
《比的基本性质》教学设计10
教具准备:
天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),
第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),
第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。[
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:
(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:
(1)等式两边都加上或减去相同的数,等式保持不变;
(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的.盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
四:小结。
有什么收获?还有什么问题?
教学内容:数学书P55-56及“做一做”。
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。
《比的基本性质》教学设计11
教学目标:
知识与技能:掌握分数的基本性质对于学生来说非常重要。分数的基本性质包括:分数的大小与分子、分母的关系,分数的化简和扩大,分数的比较大小等。通过学习分数的基本性质,可以帮助学生更好地理解和运用分数,提高他们的数学能力。同时,分数的基本性质与整数除法中商不变性质有着密切的关系,这也有助于学生对整数除法的理解和运用。在学习中,学生需要掌握如何将一个分数化简为分母相同而大小不变的分数。这需要学生观察比较分数的大小,抽象概括规律,并进行实际操作。通过这样的练习,可以培养学生的逻辑思维能力和数学解决问题的能力。因此,学生在学习分数的`基本性质时,应注重理解概念,掌握方法,多进行练习,提高自己的数学素养。
过程与方法:
在探索分数基本性质的过程中,我们体会到了数学思想方法中的“变与不变”以及“转化”的重要性。这个过程激发了我们的求知欲,也让我们体会到了数学思维的乐趣。通过互相交流和合作,我们不仅增进了对分数的理解,还培养了团队合作的意识。这种积极主动的学习态度将成为我们探索更多数学知识的动力,让我们更加享受数学带来的乐趣。
教学重点:
理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:
自主探究出分数的基本性质
教学准备:
PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:好的,我来修改一下:大家是否能猜出刚刚老师播放的是哪首经典动画片的主题曲呢?没错,我们今天的学习将从中国古典名著《西游记》的故事开始。
讲故事:唐僧师徒四人行至一村庄,路过一家饼铺,慈悲心化缘得到三块同样大小的饼。唐僧想着如何公平地分配这三块饼,便提出了一个方案:将第一块饼平均分成2份,让猪八戒吃其中的一半;将第二块饼平均分成4份,让沙和尚吃其中的一半;将第三块饼平均分成8份,悟空吃其中的一半。唐僧的提议引起了猪八戒的不满,他认为这样分配偏心,为什么悟空可以吃到一半,而他只能吃到一半。唐僧听了猪八戒的意见后,考虑了一下,觉得确实不太公平。于是,他重新想了一个更公平的分饼方案,让每个人都能公平地分享这三块饼。
生发表见解。
二、自主合作探索规律
1、三个徒弟平均分得的饼一样多。我们来看一下这组分数等式:1/2=2/4=4/8。观察一下这些分数的分子和分母,它们是相同的吗?虽然分数的分子和分母不同,但它们的值却相等。再换个角度看,我们发现分数的分子和分母发生变化,但它们的比值保持不变。分数真是一种独特的数学形式呢!
2、
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、当我们将3除以4得到的结果3/4,与12除以16得到的结果12/16进行比较时,我们发现它们是相等的。这说明了分数的一个基本性质:即分子和分母同时乘以(或除以)同一个非零数时,分数的值不变。这个性质也可以通过整数除法中商不变的性质来解释:在分数中,当分子和分母同时乘以(或除以)同一个非零数时,相当于整数除法中被除数和除数同时乘以(或除以)同一个非零数,商的值也不变。这再次强调了分数的基本性质,帮助我们更好地理解和运用分数的概念。
三、自学例题运用规律
过渡:同学们展现出了强大的学习能力,在接下来的学习中,老师希望你们能够自主学习课本96页的例2,并完成相应的练习。现在开始自主学习吧!祝你们学习顺利!
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
《比的基本性质》教学设计12
教学内容:青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。
教学目标:
1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。
教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。
教学难点:自主探究比例的基本性质。
教学过程:
一、导入
1、谈话
师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?
生1:比的意义。
生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
生3:比的前项除以后项,所得的商就是比值。
……
(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)
二、合作探究,学习新知
1、比例的意义
师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?
生:比例?(书:课题比例)
师:看到这个课题你想知道什么?
(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)
生:什么叫比例呢?
生:(书)表示两个比相等的式子叫做比例。
师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)
师:你也能举出一个这样的例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?
(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。
师:通过以上练习,你认为这句话中哪些词最重要?为什么?
生1:两个比,不是一个比
生2:相等,这个比必须相等
生3:式子,不是两个等式是式子。
师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?
(1)0、8:0、3和40:15
(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15
(4)3/18和4/24
(学生独立判断,师巡视指导,然后汇报)
师:先说能否组成比例,再说明理由,
生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。
同理教学:(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。
师:怎样改能使它组成比例呢?
生:4:8=15/2:15或8:2=15:15/4
同理教学(4)3/18和4/24
师:像3/18和4/24是比例吗?
师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?
2、认识比例各部分的名称。
师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?
生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)
师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?
生:2和32是它的内项,16和4是它的外项。
师:请同学们快速抢答老师指的数是比例的外向还是内项。
生:(激烈抢答):外项、、、、、、
师:同学们反应真快,分数的形式中哪些是比例的项呢?
生:2和32是内项,16和4是外项。
师:老师指分数比例学生抢答。
3、探索比例的基本性质。
师:同学们学得真不错,敢不敢和老师来个比赛?
生:(兴趣高涨):敢!
师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?
师:谁来。
生1:4:5,生2:8:9不能组成比例。
生:对。
师:服气吗?不服气咱们再来一次,
生1:1、2:1、8,生2:3:5
师:不能。对吗?
生:对。
师:老师又赢了,这回服气了吧。(学生点头)
师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?
生:想。
师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:
1、可以通过观察、算一算的方法进行研究。
2、你能得出什么结论?)
师:现在请将你的发现在小组里交流一下,看看大家是否同意。
(学生讨论)
师:哪个小组愿意将你们的发现与大家分享?
生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。
师:有道理,不错,还有其他发现吗?
生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。
师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)
师:这是两个外项的积,(师板书:两个外项的积)
(学生板书:16×4=64)
师:这是两个内项的积,(师板书:两个内项的积)
师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?
师:其他组的同学同意他们这个结论吗?
生:同意。
(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)
师:真的所有的比例都是这样吗?怎么验证?
生:可以多举几个例子看看。
师:这是个好建议,那快点行动吧。(学生独立验证)
生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、
生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、
师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。
4、比和比例的`区别
师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)
师:哪一组的代表来说一说。
生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。
生:比和比例形式不同。比是一个比,比例是两个比。
生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。
5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。
三、巩固练习
1、下面每组比能组成比例吗?
(1)6:3和8:5(2)20:5和1:4
(3)3/4:1/8和18:3(4)18:12和30:20
生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。
生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。
师:怎样改一下使它们能组成比例?
生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。
生4:还可以把1:4改成4:1,也能组成比例。
生5:第(3)个可以组成比例,因为3/4×3=1/8×18。
生6:第(4)个可以组成比例,因为18×20=360,12×30=360。
师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。
2、填一填。
2:1=4:()1、4:2=():3
3/5:1/2=6:()5:()=():6
师:最后一题还有没有别的填法?
生1:5:(1)=(30):6
生2:5:(30)=(1):6
生3:5:(2)=(15):6
生4:5:(15)=(2):6
师:怎么会有这么多种不同的填法?
生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。
3、用2、8、5、20四个数组成比例。
师:你能用这四个数组成比例吗?
师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?
生:2和20做外项,8和5做内项时有4种:
2:8=5:202:5=8:20
20:8=5:220:5=8:2
8和5做外项,2和20做内项时也有4种:
8:2=20:58:20=2:5
5:2=20:85:20=2:8
四、课堂总结
师:说一说,这节课你有哪些收获?
生1:知道了比例的意义。
生2:学习了比例的基本性质
生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。
师:这节课哪个地方给你留下的印象最深刻?
《比的基本性质》教学设计13
教学内容:
人教版数学第11册,第45页比的基本性质,例1和“做一做”及练习十一2及补充题。
教学目标:
1、通过自主探索、比较类推出比的基本性质,使学生理解并掌握比的基本性质,理解最简单的整数比,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。
教学重点:理解比的基本性质。
教学难点:运用比的基本性质进行化简比。
教学准备:电子白板(课件)
教学过程:
一、复习铺垫
1、求比值(让学生独立练习)
18:2423:49 0.75:0.25
2、提出问题:
(1) 23:49 =23 ÷ 49= 32,是根据什么来约分的?分数的基本性质是什么?
(2)0.75:0.25= 0.75÷0.25=75÷25=3,我们把被除数转化为整数,根据什么?说说商不变的性质。
3、比与除法、分数有何联系?
白板课件出示商不变性质和分数的基本性质。
( 设计意图:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,让学生通过回忆旧知,小组内交流做题的依据及知识间的内在联系。激活学生的思维。同时,这种回顾旧知的方法,有利于培养学生主动将新旧知识相联系、相对比,形成良好的学习方法,并构成知识网络。自然地过渡到了新课,使学生很清楚地知道知识的内在联系。)
师:联系比和除法、分数的关系,想一想:在比中有怎样的规律?
二、探究新知
(一)对于比,你有何想法? 学生纷纷猜测比的基本性质是什么?
(二)验证交流
1、在白板上出示:6∶8、12∶16和3:4,要求学生分别求出比值。
提问:这三个比相等吗?为什么?学生:这三个比相等,因为它们的比值都是(0.75).
教师用等号连结三个比(6∶8=12∶16=3∶4),提问:在这个式子中的三个比,同学们看到什么变了?什么没有变?
2、教师引导学生观察后指出:为什么这几个比的前项、后项都变了,而它们的比值却不变呢?前项和后项的变化有没有规律呢?下面我们一起来探讨这个问题.
引导学生对等式(6∶8=12∶16=3∶4)进行分析,寻找规律.
先引导学生根据商不变性质进行观察,
[1][2][3]下一页
(1)6∶8怎么变成等于12∶16?教师用白板课件展示变化过程。
提问:请认真观察这些式子,谁能用一句话把其中的规律表达出来?
引导学生得出:比的前项和后项都乘相同的数,比值不变.
再引导学生认真观察.6∶8怎么会变成等于3∶4呢?课件展示变化过程,请学生说理由。
(2)问:谁能用一句话把其中的规律表达出来?
引导学生初步归纳出:比的.前项和后项都除以相同的数,比值不变.
然后提问:比的前项和后项都乘或者除以相同的数,这里说的是不是什么数都行?乘0或者除以0可以吗?为什么?
组织学生讨论,使他们明确:因为除以0本身没有意义,乘0使比的后项没有意义.
最后让学生完整地归纳总结出比的基本性质,教师用课件出示。
(设计意图:因为有“分数的基本性质”作基础,所以学生的猜测较容易,这里完全放手,让学生大胆去猜,但并非单纯的模仿,得自己举例验证猜测的正确性。使学生养成严谨的思考问题的方式,任何猜想在没有得到证实的情况下,它的可行性都是不确定的,从而影响到今后的生活方式这里安排小组活动非常有必要,留有足够的时间让学生充分猜想、举出充分的例子来说明他们猜想的正确性,然后小组交流、汇报验证方法,再用课件展示。使学生在汇报、质疑的过程中理解并掌握比的基本性质。)
3、指导学生看书,齐读性质后,问:在比的基本性质中,你认为哪些字词是关键字词?(要求学生说出“同时”、“相同的数”、“零除外”,教师用红笔圈上.)
(三)结合练习理解比的基本性质
(1)教师说一个比,学生抢答出和它比值相等的比。如2:5=( ):10,6:( )=3:4等。
(2)同桌互说。
师:为了使数量间的关系更加简明,并使计算简便,我们经常要应用比的基本性质,把比化成最简单的整数比.
问:什么是最简单的整数比?
然后引导学生联系最简分数的概念,使学生明确化成最简单的整数比就是(1)它是一个比(2)它的前项和后项必须是整数(3)它的前项和后项必须是互质数
(四)试一试.(学习书上例1)
根据比的基本,把下列比化成最简单的整数比.
1、(课件出示)你能看出这两面国旗有什么关系吗?学生试着化简。
(1)课件展示15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
(2)问:5是15和10的什么数,为什么要除以5,60呢?
(课件答疑,学生理解它们都是两个数的最大公因数。)
(3)再问:两面国旗的长和宽的比值相等,说明什么?(大小不同,但形状一样。)再次强调化成最简单的整数比的重要性。
(4)完成书47页练习十一2题。
2、把下面各比化成最简单的整数比
上一页[1][2][3]下一页
16 :29 0.75:2
观察它们和刚才化简的比有什么不同?
(2)学生尝试解答,教师巡视辅导,并请2位同学在黑板上写。再同桌互相对照,说说自己这样做的理由.
(3)汇报化简的方法,教师结合课件讲解。
3、(课件出示)化简下列各比
15︰21 0.12︰0.4 0.1:0.125
3.2:4 0.1:23 23 :12
(五)小结化成最简整数比的一般方法。
①如果前项、后项都是整数,只要同时除以这两个的最大公因数,就可以化成最简单的整数比。
②如果前项、后项都是分数,化简时先要同时乘分母的最小公倍数,去掉分母,把它转化成整数比;然后再看是不是最简单的整数比。
③如果前项、后项都是小数,化简时先要同时扩大相同的倍数(10、100、1000……),把它转化成整数比;然后再看是不是最简单的整数比。
三、巩固练习
1、请你判断对错.
(1)0.48∶0.6化简后是0.8.(2)34 ∶12 化简后是32
(3)0.4∶1化简后是25 .
2、帮小蜗牛找家。
家的比为(6 : 300.1 : 0.4 2 :6 2 : 8 :1 16:20)
小蜗牛(45 、15、 13 、14、 23 )
上一页[1][2][3]
《比的基本性质》教学设计14
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知
(一)比的基本性质
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)
(1)4人小组交流(2)全班交流
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?
3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?
4、学生齐读,我们学习比的`基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)
1、小组交流
2、全班交流
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习
3:8=(3+6):(8+)
(让学生分小组讨论方法)
三、课堂总结
这节课有哪些收获?师生共同总结。
()年()班姓名
比的基本性质小研究
你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?
方法一
方法二
方法三
方法四
我的发现:
聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?
序号
比
我的方法
(写出过程)
1
14:21
2
36:15
3
1/6:2/9
4
2/3:3/4
5
1.25:2
6
5.6:4.2
我的发现:
《比的基本性质》教学设计15
教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题
教学目标:
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
教学重点和难点:
1、理解并掌握比例的基本性质。
2、探究、发现比例的基本性质。
教学准备:多媒体课件
教学过程:
一、复习旧知
1、师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。 2、师:如何判断两个比能否组成比例?生:化简比、求比值。
3、判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7生1:因为4∶8 = 1∶2
3∶6 =1∶2
所以6∶10 = 9∶15生2:因为20∶5 = 4∶1
28∶7 = 4∶1
所以20∶5=28∶7、
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4、师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]
二、探究比例的基本性质:
1、教学例4请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:把原来的三角形按几比几来缩小的两个三角形的底和高分别是多少?你能根据图中的数据写出比例吗?学生独立完成,然后汇报。
2、认识比例的项
(1)观察这几组比例,它们有什么共同点?
说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。
(2)结合6:3=4:2具体说一说在比例6:3=4:2中,组成比例的四个数“6、3、4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
3、探究比例的基本性质
认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的.外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。
4、验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)全班交流:有没有谁举出的比例不符合这个规律?
5、如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)
6、小结
其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。(板书)学生齐读比例的基本性质、
7、如果把比例6:3=4:2改写成分数形式,可以怎么改写?
(1)在这里,谁是内项,谁是外项?
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?
(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。
8、教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
(2)应用比例的基本性质判断能否组成比例
(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?
[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]
三、巩固练习
1、完成“练一练”第1题。
(1)从表中你知道哪些信息?
(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)
(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?
2、练习七第2题
(1)下面四个数5、7、15和21可以组成比例吗?你是怎样想的?
(2)学生独立完成,然后观察能写出的有什么规律?
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3、任意从1-10中,写出4个数,判断能否组成比例?与同桌合作完成。一个写,另一个判断。
4、我是小法官,对错我来判。
(1)在比例中,两个外项的积减去两个内项的积,差是0。
(2)如果4a=3b,(a和b均不为0),那么a:b=4:3。
(3)2:3=9:6
(4)因为3×10=5×6,所以3:5=10:6。
5、完成“练一练”第2题
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。
(2)学生独立完成第2小题。
四、全课总结
今天我们学习了什么内容?你有什么收获?
【《比的基本性质》教学设计】相关文章:
比的基本性质教学设计06-27
《比的基本性质》教学设计08-17
分数的基本性质教学设计05-30
比例的基本性质教学设计06-04
《比例的基本性质》教学设计05-16
分数的基本性质教学设计08-11
《分数的基本性质》教学设计优秀05-09
分数的基本性质教学设计15篇06-25
(优秀)《比的基本性质》教学设计15篇08-17
《比例的意义和基本性质》教学设计07-11