《积的变化规律》教学设计
我要投稿 投诉建议

《积的变化规律》教学设计

时间:2024-07-28 09:52:08 教学设计 我要投稿

《积的变化规律》教学设计

  作为一名教师,很有必要精心设计一份教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写才好呢?下面是小编收集整理的《积的变化规律》教学设计,欢迎大家分享。

《积的变化规律》教学设计

《积的变化规律》教学设计1

  教学内容:

  教材第58页例4“积的变化规律”

  教学目标:

  1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

  2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

  3、初步获得探索规律的一般方法和经验,发展学生的推理能力。

  教学重难点:

  引导学生自己发现规律,概括规律,进而运用规律。

  教学过程:

  一、创设情景,提出目标。

  1、创设情景:通过前一段时间的学习,同学们对乘法的计算已经掌握的很好了,下面同学们算一算下面各题。

  8×3= 60×4=

  16×3= 180×4=

  32×3= 240×4=

  学生计算后。师:说说你是怎样算的?你发现了什么?

  学生汇报交流,

  2、师引入:是的,在乘法运算中,积会随着因数的变化而变化,这就是我们今天要研究的积的变化规律。

  3、提出目标:

  让学生先说一说,再出示目标:

  (1)积的变化规律是什么?学这些规律有何用?

  (2)通过这节课的学习,你掌握了探索规律的什么方法?

  [设计意图]上面这两个题蕴涵了函数思想,通过这两组练习,使学生对积的变化规律有一个初步的感性认识,为学习新知做好准备。

  二、展示学习成果

  1、小组内个人展示。

  (1)提出自学要求:自学课本58页的例4、完成做一做后按学困生→中等生→优生的顺序在小组内交流展示。

  (2)生自学,师巡视指导,收集学习信息。

  2、以小组为单位在全班展示发现的积的变化规律。

  (1)积随因数扩大而扩大的规律。

  (2)积随因数缩小而缩小的规律。

  3、师生共同讨论把两个规律合并。

  (1)合并:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。

  (2)质疑讨论,引发冲突。生先质疑,师再补充质疑:

  扩大(或缩小)什么意思?

  为什么是相同的倍数?

  对“一个因数不变”中的“因数”是否适用于任何整数。

  (3)在充分讨论的基础上,把规律补充完整。学生进一步理解积的`变化规律。

  4、运用规律,完成练习。

  让学生展示“做一做”的完成情况,并说一说是如何根据积的变化规律来完成的。

  [设计意图]让学生充分经历学习的过程,学会研究问题的一般方法,使学生体会到学习的快乐。让学生动脑、动口、动手,相互交流。进一步培养学生自主探究的能力和合作交流的意识。

  三、巩固拓展,运用新知

  1、根据25×2=50,利用规律,直接写答案。

  25×20= 25×( )=1500

  25×200= 25×( )=200

  25×XX= 25×( )=50

  说说自己是怎样想的?

  2、练习九第1题。

  3、指导学生完成练习九第5题。(一个因数扩大,另一个因数缩小的积的变化规律)

  [设计意图]通过练习,让学生巩固新知,进而引导学生继续探索积的变化规律,使学生知道积的变化规律还没研究完,从而进一步激发学生和探索欲望。

  四、课堂小结,布置作业

  1、学生谈收获。

  2、作业:

  (1)练习九的第2、3、4题。

  (2)两因数的积是345,把其中一个因数乘40,另一个因数除以5,则新的积是多少?(提高题)

《积的变化规律》教学设计2

  教材分析:

  《积的变化规律》是小学四年级上册第四单元的内容,它是学生在掌握乘法运算的根本技能的根底上利用乘法运算,培养学生的推理能力,特别是合情的推理能力,是本单元教学的重要任务。教材以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,归纳出积的变化规律。通过这个过程的探索,让学生理解两数相乘时,积的变化随其中一个因数的变化而变化。

  例题的设计分为三个层次:研究问题——归纳规律——验证规律,通过学习,学生不但发现了积的变化规律,而且学会研究问题的一般方法。《积的变化规律》是引导学生学会从一般现象中寻找规律,为学生今后学习相关内容提供必要的思维模式。

  学情分析:新课程标准提出要让学生“经历、体验、探索〞。因此在教学《积的变化规律》这节课中,我注重开发利用身边的生活资源,创造性地使用教材,将教材中的两组算式调整为一组乘法算式,但是,这一组算式是以能够表达我们课本所要传达的信息与知识,引导学生通过这一组算式去发现问题从而去经历发现规律——总结规律——验证规律——运用规律这四个层次的学习。在这四个层次的学习中,学生将会通过观察、探索、交流、归纳等方式经历积的变化规律的探索过程,初步获得探索规律的一般方法和经验,体验发现规律是一件很愉快的事情,从而增强学习数学的自信心。教学目标:

  1.学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

  2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

  3.初步获得探索规律的一般方法和经验,开展学生的推理能力。

  教学重点:引导学生自己发现规律,概括规律,进而运用规律。

  教学难点:自主思考探究,归纳出积的变化规律

  教学方法:先学后教〔先让学生自主学习探究,再归纳总结)教学过程:

  一、创设情景,导入新课

  师:今天,我们教室来了许多听课的老师,我们应该怎样表示欢送啊?

  生:鼓掌。

  师:我们一分钟最多能鼓掌多少次呢?

  通过学生猜测和实际尝试,得出学生一分钟鼓掌的次数,接着设问:2分钟、4分钟、8分钟、10分钟呢?引导学生列出算式并进行计算。

  『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的`数感及提出数学问题的能力。

  二、设疑自探:

  1、出示自探提示:〔课件出示〕【找学生读自探提示】

  利用导学提纲自学课本51页内容,思考下面问题:

  〔1〕从上往下观察第一组题:第?题与第?题比拟,第?题与第?题比拟,第一个因数有什么特点?第二个因数乘了几?积怎么变化?你发现了什么规律?把你的发现写出来。

  〔2〕从上往下观察第二组题:第?题与第?题比拟,第?题与第?题比拟,第二个因数有什么特点?第一个因数除了几?积怎么变化?你发现了什么规律?把你的发现写出来。

  〔3〕你能用一句话将两组题中已经发现的规律概括起来吗?

  2、在学生自探时师板书课本例题:

  例3观察下面两组题,说一说你发现了什么?

  第一组:

  6×2=12

  6×20=120

  6×200=1200

  第二组:

  20×4=80

  10×4=40

  5×4=20

  3、根据自探提示,学生独立解决,教师巡视。

  三、解疑合探

  1、学生汇报自探提示第一题,总结变化规律。然后出示根据8×50=400,直接写出16×50=?

  32×50=?的得数,进一步归纳总结发现的规律,然后分小组讨论,自己当小老师出题验证发现的规律,最后和大家分享自己的研究成果,得出结论。

  (课件出示第一组口算题目,演示比照这一组因数与积的变化情况,得出结论:两个数相乘,一个因数不变,另一个因数乘几,积也要乘几。)8 / 12

  2、学生汇报自探提示第二题,总结变化规律。然后出示根据8×50=400,直接写出8×25=?

  2×50=?的得数,进一步归纳总结发现的规律,然后分小组讨论,自己当小老师出题验证发现的规律,最后和大家分享自己的研究成果,得出结论。

  (课件出示第二组口算题目,演示比照这一组因数与积的变化情况,得出结论:两个数相乘,一个因数不变,另一个因数除以几〔0除外),积也要除以几。)3、通过观察、思考用一句话概括已经发现的规律。学生总结不完整时,讨论这个问题得出结论:〔课件出示〕两个数相乘,一个因数不变,另一个因数乘〔或除以〕几〔0除外〕,积也要乘〔或除以〕几。这就是积的变化规律。〔指导学生抓住关键词来记忆〕

  四、运用拓展

  1、先找出规律再填空:

  12×8=96 40×21=840

  12×16=192 40×7=210

  12×32=384 20×21=420

  12×64=768

  2、判断:

  〔1〕两数相乘,一个因数不变,另一个因数乘5,积应该乘5。

  〔2〕两数相乘,一个因数除以10,另一个因数不变,积也除以10。

  〔3〕一个因数扩大4倍,积也一定扩大4倍。

  3、一块宽为8米的长方形绿地面积为560平方米,要求宽要增加到24米,长不变。扩大后的绿地面积是多少?

  24÷8=3 560×3=1680〔平方米〕

  答:扩大后的绿地面积是1680平方米。

  五、质疑再探:

  探究:

  1、两个因数相乘,两个因数同时乘几,积怎样变化?

  2、两个因数相乘,两个因数同时除以几,积怎样变化?

  3、两个因数相乘,当一个因数扩大另一个因数缩小时积怎么变化?〕学生提出问题,找学生来答复,老师补充总结。

  六、板书设计:

  第一组:第二组:

  6×2=1220×4=80

  6×20=120 10×4=40

  6×200=12022×4=20

  积的变化规律:两个数相乘,一个因数不变,另一个因数乘几〔或除以〕几〔0除外〕,积也乘〔或除以〕几。

  《积的变化规律》教学反思

  《积的变化规律》是人教版教材数学四年级上册第四单元的内容。它是在学生掌握了三位数乘两位数的计算方法的根底上进行教学的。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我先创设情境,让学生列出相应的乘法算式,通过对算式的观察,让学生讨论自己的发现,然后引出新知,再让学生根据自探提示自主的去探索规律、验证规律,并使用规律。,本课主要是学生自主地去学习,我鼓励学生积极发言,大胆猜测,10 / 12

  小心求证,积极主动地探索新知,让学生体会成功的喜悦,激发了学习兴趣,增强了自信心。这节课上下来还是存在许多问题:

  1、由于本课例题比拟简单,大局部学生通过口算就能直接算出,无需通过积的变化规律进行计算,这就给局部思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的应用。这在后面拓展应用知识时表现的尤为明显,局部学生还是用以前的老方法进行计算,而不是找到规律直接写得数。在以后的教学中,要特别关注思维慢一些的学生,加强对他们的引导,使他们能更积极更有目标的去思考,增强学生的自信心,使学生能积极主动地去获取知识。

  2、要用好评价语言,鼓励学生参与到课堂学习中。这节课的主要特点是让学生在一个愉悦的学习环境中进行思考、探索、讨论、,但是大局部学生还是不敢举手大胆的交流。这局部学生主要是害怕自己说错了,让别的同学取笑。针对学生不敢发言,在以后的课堂教学中要注意多给学生鼓励,多给学生信心,以使学生畅所欲言。

  3、对于积的变化规律的运用,学生对于根本的练习能够运用自如,但是灵活度较高的练习就有些困难。因此,在选择练习时应关注练习的广度,让学生见多识广、灵活运用。

  4、学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完本钱课的教学任务,并能充分表达了数学学习的“亲历性〞,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步

  和开展。特别是在初步感知规律后,引导学生猜测:是不是所有的乘法算式都具有这样相同的特点呢,再自己想方法加以验证。

《积的变化规律》教学设计3

  教学目标:

  1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。

  2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。

  3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。

  4、培养学生从正反两个方面观察事物的辨证思想。

  教学重点:发现并运用积的变化规律。

  教学难点:积的变化规律的探究策略。

  教学过程:

  一、创设情景,提出问题

  屏幕显示:为九九重阳节开展的“走进敬老院,浓浓敬老请”活动我们全校学生都捐出自己的零花钱,为老人们购买一些物品。请你们帮忙算一算,一千克橙子6元,买2千克花多少钱?40千克呢?200千克呢?(学生回答)

  6╳2= 12(元)

  6╳40=240(元)

  6╳200=1200(元)

  师:仔细观察、比较这组算式,你能发现什么?

  生1:有一个因数都是6。

  生2:对,一个因数相同,另一个因数不同,积也不同。

  师 :观察得真仔细! 一个因数相同可以说一个因数不变,那另一个因数呢?

  生3:另一个因数变了,积也变了。

  生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。

  师 :你是从上往下观察的,还可以怎样看?

  生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。

  师 :当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。

  二.自主探究,发现规律

  1、研究一个因数不变,另一个因数变大,积的变化情况。

  6×2= 12(元)

  6×20=120(元)

  6×200=1200(元)

  (1)师:在研究问题的过程过程中,为了方便我们研究和表达,可以把这组算式分别说成(1)式,(2)式,(3)式。

  (2)引导学生分别用(2)式、(3)式与(1)式比,观察因数和积分别有怎样的变化?在小组内互相说一说。

  (3)出示18×2=36和30×2=60,还是与(1)式比较,观察因数和积分别又有怎样的变化?在小组内互相说一说。

  师:谁来说说通过刚才的两次比较,你们又发现了什么?

  生:一个因数不变,另一个因数变化,积也变化。

  师:怎样变化的?能说得具体些吗?

  生1:一个因数不变,另一个因数乘一个数 ,积也乘相同的数。

  生2:一个因数不变,另一个因数乘几 ,积也乘几。

  师:你们真能干!刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察,用刚才比较研究的方法,比一比,看看有没有新的发现?具体应该怎么比呢?

  2、研究一个因数不变,另一个因数变小,积的变化情况。

  (1)师:如果这组算式从下往上观察,分别把上面的两个式子与底下的一个式子作比较,会不会有新的发现呢?

  学生独立思考后把想法在小组内交流一下。

  (2)全班汇报交流:你发现了什么?是怎样发现的?

  3、验证规律。

  师谈话:刚才大家发现的规律是不是具有普遍性呢?研究数学问题一般不匆忙下结论,要再举一例子,看看会不会出现相同的情况。如果有一个例子出现了不同的情况,就不能把这种发现当作规律,这就是研究数学问题应该持有的严谨的态度。你能自己举例说明积的变化规律吗?

  每位学生写3个算式,同桌互相检查和交流因数和积是怎样变化的。(汇报情况略)

  师 :既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的`积的变化规律。谁来把这个规律再说一说。

  生 :一个因数不变,另一个因数乘几 ,积也乘几;一个因数不变,另一个因数除以几 ,积也除以几。

  师 :数学讲究简洁美,能把它说得再简单点吗?

  生 :一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。

  师 :说得太棒了!同学们,祝贺你们发现了积的变化规律,愿意用它解决实际问题吗?

  三、运用规律,解决问题

  1、根据8×50=400,直接写出下面各题的积。

  16×50= 32×50= 8×25=

  2、全社会各界朋友发起了向西藏教育捐赠和教师自愿者等活动,他们考虑着何种运输方式进入西藏。咱们也帮忙分析一下,一辆汽车在青藏公路上以60千米/时的速度行使,4小时可以行( )千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的时间可行千米。

  生 :一辆汽车4小时可以行驶240千米,用60乘4等于240千米。

  师 :根据什么数量关系来列式计算?

  生 :速度乘时间等于路程。

  师 :第二个问题呢?

  生 :60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。

  师 :还有其它解法吗?

  生 :240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。

  师 :能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种方法?

  生 :喜欢第2种,只需一步计算。

  师 :多关注已有信息,灵活运用规律能使解题思路更开阔。

  ……

  四、全课总结,拓展延伸

  师 :在这节数学课上,你们还有什么收获吗?

  生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。

  生2:我会用积的变化规律解决生活中的问题,很方便。

  师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。

  18×30= 18×15= 18×5= 54×5=

  师:比较18×15= 270和 54×5=270,你们还有什么新的问题、新的想法吗?

  生:为什么两个因数都变了,积却不变呢?是不是有什么规律?

  师:多么有价值的问题!下课后你们用今天研究问题的方法去探究新的规律,老师祝你们成功!

《积的变化规律》教学设计4

  教材分析:

  《积的变化规律》是小学四年级上册第三单元的内容,它是学生在掌握乘法运算的基本技能的基础上利用乘法运算,培养学生的推理能力,特别是合情的推理能力,是本单元教学的重要任务。教材以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随其中一个因数的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。例题的设计分为三个层次:研究问题——归纳规律——验证规律,通过学习,使学生不但发现了积的变化规律,而且学会研究问题的一般方法。《积的变化规律》是引导学生学会从一般现象中寻找规律,为学生今后学习相关内容提供必要的思维模式。

  设计理念:

  新课程标准提出要让学生“经历、体验、探索”。因此在教学《积的.变化规律》这节课中,我注重开发利用身边的生活资源,创造性地使用教材,将教材中的两组算式调整为一组乘法算式,但是,这一组算式是以能够体现我们课本所要传达的信息与知识,引导学生通过这一组算式去发现问题从而去经历发现规律——总结规律——验证规律——运用规律这四个层次的学习。在这四个层次的学习中,学生将会通过观察、探索、交流、归纳等方式经历积的变化规律的探索过程,初步获得探索规律的一般方法和经验,体验发现规律是一件很愉快的事情,从而增强学习数学的自信心。

  教学目标:

  1、让学生探索并掌握当一个因数不变,另一个因数乘(或除以)几,积也要随着乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题中。

  2、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

  3、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

  教学重点、难点:

  引导学生自己发现规律,概括规律,进而运用规律。

  教学过程

  一、创设情境,引发问题:

  谈话:现在是什么季节?(秋天)对了,秋天到了,小英学校里要去秋游,妈妈带小英去超市购物,来到超市,小英要买上好佳。

  二、自主学习,探究规律:

  1 、出示问题:

  ①上好佳每包6元,如果买 2 包,一共多少元?

  ②上好佳每包 6元,如果买20 包,一共多少元?

  ③上好佳每包6元,如果买 200 包,一共多少元?

  2 、学生口头列式并计算:(教师板书)

  6×2=12

  6×20=120

  6×200=1200

  3、观察算式、寻找规律:

  师:仔细观察、比较这组算式,你能发现什么?因数和积各是怎样变化的?

  ① 学生观察、独立思考。

  ② 得出规律:当一个因数不变,另一个因数乘几时,积也要随着乘几。

  4、揭示课题:积的变化规律。

  三、继续探究:

  1、出示问题:

  ①上好佳大礼包每包 20 元, 4 包一共多少元? ②上好佳中礼包每包 10 元, 4 包一共多少元? ③上好佳小礼包每包5元, 4 包一共多少元?

  2 、学生口头列式并计算 : (教师板书)

  20×4=80

  10×4=40

  5×4=20

  3、引导学生进行观察、讨论:

  ①观察算式独立思考。

  ②同桌探索规律。

  板书呈现:(缩小相同的倍数)

  20×4=80

  除以2 除以2

  10×4=40

  除以2 除以2

  5×4=20

  引导学生小结:当一个因数不变,另一个因数除以几时(0除外),积也除以几。

  4、概括规律:

  教师根据学生回答完成板书:

  两个因数相乘,当一个因数不变,另一个因数成乘(或除以)几时,积也随着乘(或除以)几。

  四、当堂检测。

  师:下面我们就要运用积的变化规律来进行一次数学擂台,准备好了吗?

  第一关:火眼金睛

  1、判断:

  (1)两数相乘,一个因数不变,另一个因数乘5,积应该乘4。( )

  (2)两数相乘,一个因数除以10,另一个因数不变,积也除以10。( )

  第二关:灵活机智

  2、 用积的变化规律填空。

  17×12 = 204 25×40= 1000

  17×24 =( ) 25×20=( )

  17×48 =( ) 25×10 =( )

  第三关:快乐动脑

  妈妈打算买6千克苹果和4千克香蕉,苹果5元:3千克

  应付多少钱? 香蕉10元:2千克

  师:从图上你知道了哪些信息?

  (1)生:苹果5元:3千克 香蕉10元:2千克

  (2)生:妈妈打算买6千克苹果和4千克香蕉,应付多少钱? 5×(6÷3)=10(元)

  10×(4÷2)=20(元)

  10+20=30(元)

  答:应付30元。

  板书设计

  积的变化规律

  6×2=12 20×4=80

  6×20=120 10×4=40

  6×200=1200 5×4=20

《积的变化规律》教学设计5

  课 题

  积的变化规律

  设计意图

  教学内容:人教课标版四年级上册第58页例4,59页练习九的内容。

  设计理念:结合学生的生活实际创设情景导入新课,让学生自主的去探索积的变化规律,充分发挥学生的主体地位,在探索的过程中使学生感受到数学知识的内在联系的逻辑美。

  教学目标:

  1、使学生掌握积的变化规律,并能熟练地应用到计算中。

  2、在小组活动中培养学生的合作能力。

  3、建立知识结构,学会归纳、总结、比较、分析的逻辑思维能力。

  4、培养学生从正反两个方面观察事物的辩证思想。

  5、感悟数学知识的内在联系的逻辑美。

  教材分析:

  《积的变化规律》是人教课标版四年级上册第58页例4,59页练习九的内容。本课重点让学生掌握一个因数不变,另一个因数乘上几(或除以几)积也乘上几(或除以几)的规律,并能熟练地应用到计算中。

  教学重点:

  掌握并能运用积的变化规律。

  教学难点:

  探究积的变化规律。

  教法与学法:直观教学法、自主探究法

  教学准备:多媒体课件。

  教学过程:

  一、情境导入:

  我们的城市在市政府的治理下,环境越来变得越优美。各生活小区地面种上了花和草,路面铺上了水泥砖。发挥你们的才智,贡献出你们的一份力量。请你们帮忙算一算:一块水泥砖6元,2块水泥砖多少元?40块呢?200块呢?……谁先来?

  根据学生的回答,教师板书:6×2=12(元)

  6×40=240(元)

  6×200=1200(元) ……

  师:谁来说一说算式中的6和2是什么?12又是什么?

  观察算式你发现了什么?学生自由说,引出课题。

  二、自主探究,发现规律:

  为了方便把上面的算式分别为(1)式、(2)式和(3)式。

  如果把(1)作标准,(2)式和(3)式分别与(1)式相比,因数和积各是怎样变化的?

  分组讨论,并把讨论的结果记录下来。

  汇报讨论结果。各小组选代表来说一说。

  (在汇报过程中,及时鼓励学生。)

  最后得出结论:一个因数不变,另一个因数乘几,积也乘几。

  师:刚才我们是从上往下来观察的发现了积的这样的变化,那从下往上观察,用刚才比较研究的方法,比一比,看看有没有新的发现?

  具体应该怎样比?你的发现是什么?

  学生自由来说,然后把学生的回答进行总结。

  得出的结论是:一个因数不变,另一个因数除以几,积也除以几。

  谁能把刚才大家的研究总结一下?积的变化与谁有关系?是怎样的关系?

  学生作最后的总结:一个因数不变,另一个因数乘几或除以几,积也乘几或除以几。

  三、质疑、巩固新知。

  刚才我们找到的'变化特点,是不是所有的乘法算式都具有这个特点哪?要想解决这个问题该怎么办哪?(我们可以找一些乘法算式的例子用刚才的比较方法研究,看看积的变化是不是具有这个特点。)

  同桌相互出题,共同验证。(数大时可以用计算器帮忙。)

  汇报验证结果。

  四、课堂小结:通过今天的研究,你们知道了什么?

  学生自由说出这节课的收获。

  (师:你们说的太棒了!祝贺大家发现了积的变化规律。愿意用它解决实际问题吗?那就跟我走吧!)

  五、运用规律,解决问题。(多媒体课件出示)

  1、根据8×50=400,直接写出下面各题的积。

  16×50=

  32×50=

  8×25=

  8×150=

  4×50=

  2、根据12345679×9=111111111,直接

  写出下面各题的积。

  12345679×18=

  12345679×27=

  81×12345679=

  12345679×( )=444444444

  12345679×( )=666666666

  3、59页2题

  4、59页5题

  板书设计: 积的变化规律

  乘几 乘几

  一个因数不变,另一个因数 积

  除以几 除以几

  教学反思:

  《积的变化规律》是人教版教材数学四年级上册第3单元的内容。它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。

  “探索规律”是数与代数领域要教学的主要内容之一。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我引导学生通过观察、口算、计算、交流等活动,归纳出积的变化规律。学生在探索活动过程中兴趣很高,交流得也很积极,但是让学生总结出积的变化规律还是有些困难的。因而,我想到我们平时的课堂在学生的总结能力上还有待于教师进一步关注。让学习成为学生一种愉悦的情绪体验和积极的情感体验过程。这样,学生自然就敢于自信地说出自己的想法了。

  另外,对于积的变化规律的运用,学生对于基础的练习能够运用自如,但是灵活度较高的练习却有些困难。因此,教师在选择练习时应该关注练习的广度和新鲜度,让学生见多识广、灵活运用。

《积的变化规律》教学设计6

  教学内容:苏教版义务教育课程标准实验教科书数学四年级(下册)P83例题,P83-84“想想做做”。

  教学目标:

  1、使学生借助计算器的计算,探索并掌握“一个因数不变,另一个因数乘几,得到的积等于原来的积乘几”的变化规律。

  2、使学生在利用计算器探索规律的过程中,经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的`基本方法,进一步获得探索规律的经验,发展思维能力。

  3、使学生在参与数学学习活动的过程中,学会与他人交流,体会与他人合作交流的价值,逐步形成良好的与他人合作的习惯和意识。

  4、使学生在发现规律的过程中,体验数学活动的探索性和创造性,感受数学结论的严谨性和确定性,获得成功的乐趣,增强学习数学的兴趣和自信心。

  教学过程:

  一、游戏引入:

  用计算器玩游戏

  要求:在1-9中任意选一个数,然后用计算器把这个数乘3,再乘127,算出结果。只要一报出结果,老师马上能知道,一开始在1-9中任意选择的是哪个数。

  【意图:计算器作为探索的工具并以游戏方式载入一是有利于激活学生熟练运用计算器的能力,同时对游戏中隐含的规律产生好奇,为后继进一步运用计算器探索规律做好心理上的准备】

  二、揭示课题:

  1、刚才我们用计算器玩了个小游戏,今天课上我们还要用到计算器,我们要用它来探索规律。(板书课题:用计算器探索规律)

  2、看了这个课题,现在你最想了解的是什么?通过交流让学生感受到三个方面:①什么规律? ②怎样研究? ③有什么用?

  【意图:一开始提出探索的目标有利于学生明确探索的内容和方向,把重点集中到探索和发现规律上来,本课的着力点自然地凸现了出来。】

  三、探索规律

  (一)建立猜想

  1、用计算器计算:36×30的积。

  2、36、30在这个乘法算式中叫做什么?1080又叫做什么?

  3、猜想:如果其中的一个因数不变,另一个因数乘一个数,得到的积可能会有什么变化呢?比如,一个因数36不变,把另一个因数30乘2,或者把30乘10,积会有什么样的变化呢?再比如,一个因数30不变,另一个因数36乘8,或者乘100,积又会有什么样的变化呢?能不能来猜一猜?

《积的变化规律》教学设计7

  一、研究“两数相乘,其中一个因数变化,它们的积如何变化饿规律。

  1、研究问题,概括规律

  (1)两数相乘,一个因数不变,另一个因数乘几时,积怎么变化。

  学生完成下列两组计算,想一想发现了什么?你能根据每组算式的特点接下去再写两道算式吗?试试看

  6×2= 8×125=

  6×20= 24×125=

  6×200= 72×125=

  组织小组交流

  归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。

  (2)两数相乘,一个因数不变,另一个因数除以几时,积有怎么变化?学生完成下列两组计算,想一想有发现了什么?

  8×4= 25×160=

  40×4= 25×40=

  20×4= 25×10=

  引导学生概括:

  两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。

  (3)整体概括规律

  问:谁能用一句话将发现的两条规律概括为一条?

  引导学生总结规律。

  2、验证规律

  1)先用积的变化规律填空,再用笔算或计算器验算。

  26×48= 17×12=

  26×24= 17×24=

  26×12= 17×36=

  观察算式。

  学生将发现的规律说给自己的同伴听。

  全班汇报交流发现的规律,并说说自己是怎么想的

  说明写算式的理由

  学生讨论因数变化的规律

  汇报交流规律

  两数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。

  学生填空并验证

  使学生通过观察,计算、思考、对比,能够自主发现并总结因数变化引起的积的变化规律

  尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力

  教学过程

  自己举例说明积的变化规律

  3、应用规律

  完成例4下面的做一做和练习9的1———4题

  二、研究“两数相乘,两个因数都发生变化,积变化的规律“。

  1、独立思考,发现规律

  完成下列计算,说规律。

  18×24=

  (18÷2)×(24×2)=

  (18×2)×(24÷2)=

  105×45

  (105÷5)×(45×5)=

  (105×3)×(45÷3)=

  2、组织全班交流,概括规律

  两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。

  三、巩固新知

  1、书上练习九的1、2、3

  2、一个长方形的面积是256平方厘米,如果长缩小到原来的,宽扩大到原来的4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?

  四、总结

  这节课有什么收获?

  五、作业:第59页4、5每位学生各写两组算式,一组3个。

  完成计算,并述说自己发现的规律

  学生概括规律

  独立填写各题的商,再交流自己的想法。

  独立解答后交流汇报。

  讨论交流后说明思路。

  初步获得探索规律的.一般方法和经验,发展学生的推理能力。

  培养学生用数学语言表达数学结论的能力

  通过练习,进一步巩固积的变化规律,并能应用规律解决问题。

  板书设计积的变化规律

  (1)6×2= 8×125=(2)8×4= 25×160=

  6×2 24×125= 40×4= 25×40=

  6×200= 72×125= 20×4= 25×10=

  两数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。

  教学目标知识与技能:1、学生通过观察,能够发现并总结积的变化规律。

  2、过程与方法:使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

  3、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

  4、初步获得探索规律的一般方法和经验,发展学生的推理能力。

  情感、态度和价值观:

  培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。

  重点引导学生自己发现并总结积的变化规律。

  难点引导学生自己发现并总结积的变化规律。

《积的变化规律》教学设计8

  教学内容:四年级教科书第58页例4、

  教学目标:

  1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分趣的事情。

  2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

  3、初步获得探索规律的一般方法和经验,发展学生的推理能力。

  重难点:

  重点:一个因数不变,另一个因数与积的变化情况。

  难点:自主思考探索,归纳积的变化规律。

  教学过程:

  一、激发兴趣,导入新课

  师:我们在上课前玩一个对对子的游戏,看谁反应最快!

  师出:1只青蛙,( )条腿。(并拍手)

  生对:1只表蛙, 4条腿。

  … …

  师:你们的脑子转得真快,其实在这个游戏中藏着许多的数学知识,让我们一起来找一找。刚才同学们说2只青蛙8条腿,谁能列式?6只呢?18只呢?

  2×4=8

  6×4=24

  18×4=72

  二、自主学习,探索新知。

  1.师:观察这组算式什么变了,什么没变?

  生:其中一个因数变了,积也变了。另一个因数没变。

  师: 把第一个算式的因数同第二个算式的因数比较,扩大了多少倍?积有什么变化?

  生:扩大了3倍,积也扩大3倍。

  师:第二个算式跟第三个算式比呢?

  师: 第一个算式跟第三个算式比呢?

  师:如果一个因数扩大10倍,20倍,100倍呢?积会怎么样?

  生:也会扩大相同的.倍数。

  师:这里你发现什么规律?

  总结:(板书)两个因数相乘,其中一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。

  2、运用这个规律练习

  24× 5=120 14×5=70

  24×10=( ) 14×( )=210

  24×20=( ) ( )×30=420

  学生填写,并说说你是怎么想的。

  3、科学家都善于猜想,今天咱们也来一次大胆的猜想,你又会有什么发现?

  80×5=400

  40×5=200

  20×5=100

  小结:两个因相乘,一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。

  4、运用规律练习

  45×20=900 16×30=480

  45×10=( ) 16×15=( )

  45×2 =( ) ( )×15=120

  并说说你是怎么想的?

  5、整体概括规律

  师:谁能用一句话将两条规律概括为一条?让语言更简洁。

  板书:两个因数相乘,一个因数不变,另一个因数扩大或缩小几倍,积也扩大或缩小相同的倍数。

  师:刚才我们发现的规律是乘法计算中一条特别重要的性质叫积的变化规律。

  板书:积的变化规律

  三、验证规律

  师:大家发现的这条规律是不是具有普遍性呢?研究数学问题一般不匆忙下结论,再举一例子,看是否一致,如果不同就不能下结论。那么我们来验证一下吧!

  根据15×6=90,那么15×24=?,先根据规律来填写,再算一下。你会接着写吗?

  四、运用规律练习

  12345679× 9=111111111

  12345679×18=( )

  12345679×27=( )

  12345679×( )=999999999

  五、拓展,你能发现什么规律?

  18×24=432

  (18÷2)×(24×20)=( )

  (18×2)×(24÷20)=( )

  小结:只要大家勤于思考,你还会发现积更多的变化规律。

《积的变化规律》教学设计9

  教材分析

  《积的变化规律》是人教版四年级上册第三单元的例题、

  本节课是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

  教材首先出示2×6 =12、20×6=120、200×6=1200 ,让学生依据给出的乘法算式,探索当一个因数不变,另一个因数乘一个数,得到的积会有什么变化,引导学生作出猜想。再出示20×4=80,10×4=40,5×4=20,引导学生观察,发现规律,提出猜想。

  学情分析

  该内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上,引导学生借助计算器探索积的一些变化规律,掌握这些规律,为学生进一步加深对乘法运算的.理解以及今后自主探索和理解小数乘除法的计算方法做好准备。

  教学目标

  一、知识与技能:

  (1) 使学生探索并掌握一个因数不变,另一个因数乘几,积也随着乘几的变化规律。

  二、过程与方法:

  (1)经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得一些探索数学规律的经验,发展思维能力。

  三、情感态度价值观:

  (1)通过学习活动的参与,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性,获得成功的体验,增强学习数学的兴趣和自信心。

  教学重点和难点

  1.教学重点:

  使学生探索并掌握一个因数不变,另一个因数乘几(或除以几),积也随着乘几(或除以几)的变化规律。

  2、教学难点:在探索和发现规律上,能更多的体验一般策略和方法,发展数学思考。

《积的变化规律》教学设计10

  【教学内容】

  人教版四年级上册51页

  【教学目标】

  1.使学生经历积的变化规律的发现过程,尝试用简洁的语言表达积的变化规律。

  2.初步获得探究规律的一般方法和经验,发展学生的推理能力。

  3.在学习过程中培养学生的探究能力,合作交流能力和归纳总结能力。

  【教学重点】

  发现并运用积的变化规律。

  【教学难点】

  积的变化规律的探究策略。

  【教学准备】

  课件

  【教学过程】

  一、复习旧知,巧导新课。

  1.口答题:

  (1)一个因数是6,另一个因数是5,积是()

  (2)把7扩大9倍是()

  (3)把56缩小8倍是()

  2.找规律写一写

  12345679×9=111111111

  12345679×18=22222222

  12345679×27=333333333

  12345679×36=444444444

  ——————————————

  ——————————————

  为什么这样写呢?(第一个因数不变,第2个因数是9的几倍积就是111111111的几倍?)从这个题中我们可以看出在乘法算式里积的变化是和谁有关系?(因数)那么是不是这样的呢?我们现在就一起来探究这个问题(积的变化规律)(板书课题)

  二、自主探究,发现规律。

  1.探究规律

  (我们一起来看看第一组题,算一算,再观察这组题里面的三个算式里面的因数和积分别是怎样变化的?

  (1)出示题目

  6×2=

  6×20=

  6×200=

  (2)先自己算算,再想一想你发现了什么,在小组中交流你的.发现,准备汇报。

  (3)汇报:先说结果,哪小组愿意上来边指边说你们的发现?(不同的学生汇报)

  师:能不能把你们的发现用一句话概括呢?

  一个因数不变,另一个因数乘几,积也乘几。

  师:一个因数不变,另一个因数乘4,积会怎样?

  一个因数不变,另一个因数乘4,积乘5,行吗?为什么?

  (说明这两个“几”是一样的数。)

  (4)出示题目

  20×4=

  10×4=

  5×4=

  算一算,比一比,这组题目又是怎么变化的?

  (5)小组内交流,汇报

  一个因数不变,另一个因数除以几,积也除以几。

  有没有想说的?除以0可以不?(板:一个因数不变,另一个因数除以几(0除外),积就除以几)

  (孩子们我们数学追求的是准确,简练。你能不能把这两句话合并为一句呢?)先独立想,再汇报。

  2.总结规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

  (4)这条规律是不是真的适用呢,你能用这个规律写一组算式吗?

  要求:同桌合作,左边的同学写一个算式,右边的同学运用规律写一个算式。比一比谁做的快。

  (5)汇报

  三、巩固拓展,巧用规律。

  1.根据8×50=400填空

  16×50=()8×25=()

  ()×50=12004×()=200

  2.判断

  (1)两数相乘,一个因数不变,另一个因数乘5,积应该乘4。()

  (2)两个数相乘,一个因数扩大8倍,另一个因数缩小1倍。积扩大8倍。

  (3)一个因数扩大4倍,积一定扩大4倍。()

  (4)两数相乘的积是20,当一个因数不变时,另一个因数也扩大a倍,积就是20×a。()

  3.填空

  (1)一个长方形的宽不变,长扩大到原来的5倍,面积扩大到原来的()倍。

  (2)两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是()

  (3)一个因数不变,把其中另一个因数扩大到原来的3倍,积是90,原来两个因数的积是()

  4.51页2题

  算一算,想一想。你能发现了什么?

  4×6=245×10=50

  (4÷2)×(6×2)=24(5÷5)×(10×5)=50

  (4×2)×(6÷2)=24(5×5)×(10÷5)=50

  四、课堂小结

  孩子们,短暂的40分钟过得很愉快,你们开心吗?这节课你都有哪些收获呢?与大家一起分享一下

  五.课后练习,拓展延伸

  在乘法算式里,如果两个因数同时扩大2倍,积会()。如果一个因数扩大4倍,另一个因数缩小2倍,积会()

  板书设计

  积的变化规律

  积______________因数

  在乘法算式里,一个因数不变,另一个因数乘几或除几(0除外),积也乘(或除以)相同的数.

【《积的变化规律》教学设计】相关文章:

积的变化规律教学设计06-06

积的变化规律说课稿范文(精选14篇)11-01

找规律教学设计06-12

《找规律》教学设计04-17

《商不变的规律》教学设计07-20

找规律教学设计优秀12-07

《找规律》教学设计优秀04-28

《蜡烛的变化》教学设计06-21

《天气变化》教学设计04-24

[经典]找规律教学设计15篇12-16