(必备)《分数与除法》教学设计
我要投稿 投诉建议

《分数与除法》教学设计

时间:2023-10-27 07:32:28 教学设计 我要投稿

(必备)《分数与除法》教学设计

  作为一名默默奉献的教育工作者,很有必要精心设计一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么你有了解过教学设计吗?下面是小编为大家整理的《分数与除法》教学设计,欢迎大家分享。

(必备)《分数与除法》教学设计

《分数与除法》教学设计1

  教学设想:

  1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。

  2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

  3、创设有效的.问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

  教学目标:

  1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

  2、培养学生动手操作、合作交流和灵活运用知识的能力。

  3、通过学习,培养学生转化的数学思想和勇于探索的精神。

  教学重点:

  理解分数与除法的关系。

  教学难点:

  具体体会每一个商的由来和表示的含义。

  教学过程:

  一、感知关系

  1、问题:把6米长的绳子平均分成3段。每段长多少米?

  把1米长的绳子平均分成3段。每段长多少米?

  提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

  2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

  板书:被除数÷除数=被除数/除数

  二、探究关系

  1、、验证关系

  (1)通过动手操作验证

  出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

  列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

  动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

  同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

  反馈验证

  引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

  板书:3÷4=3/4

  (2)运用分数意义验证

  师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?

  出示例[2]:17分是几分之几小时?

  引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

  1÷60=1/60 17÷60=17/60(小时)

  引导小结:分数与除法之间的关系,还可以用来转化名数。

  2、揭示关系

  师:通过刚才的验证,你得出了哪些结论?

  ①两个数相除,当商不是整数时,可以用分数来表示。

  ②被除数÷除数=被除数/除数。

  师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

  联系

  区别

  除法

  被除数

  除号

  除数

  是一种运算

  分数

  师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

  引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

  三、巩固关系

  1、强化分数与除法的关系。

  ① P、82 2 ②(P、82 4)

  ③填上合适的分数8cm=()m 13g=()kg 15dm2=()m2 29分=()小时

  ④在括号里填上合适的数

  ()÷()= 5/8,3/5=()÷(),()/()=()÷()

  2、比较练习,完成P、82 3

  ①学生选择条件,列式解答。

  ②引导比较:联系—都占总数的1/3,区别—能否用整数表示商

  四、总结提升

  师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

  质疑:5/8这个分数表示的意义是什么?还可以怎样理解?

《分数与除法》教学设计2

  教学目标

  1.在理解分数除法算理的基础上,正确熟练地进行分数除法的计算。

  2.运用所学的分数除法的知识,解决相应的实际问题。

  教学重难点

  教学重点:正确熟练地进行分数除法的计算。

  教学难点:解决相应的实际问题.。

  教具准备课件

  设计意图教学过程特色设计

  正确熟练地进行分数除法的`计算。

  教学过程

  一、基础知识练习:

  (一)计算:

  2/13÷28/9÷43/10÷35/11÷522/23÷2

  3/10÷223/24÷2617/21÷518/9÷713/15÷4

  学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的

  (二)教材P36第13题,学生独立计算。

  二、深入练习

  教材P36第14题,学生板演,集体订正。

  三、解决问题

  第7题学生独立解答。

  第8题学生解答时提示学生需要先统一单位。

  小结共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

  四、作业练习:

  教材P36第12,15,16题。

  学生先读题,说一说解题思路,然后学生列式计算。

《分数与除法》教学设计3

  单元教材分析

  本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识.这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用.教材内容包括:分数除法,解决问题,比和比的应用.这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础.两方面的收获,都将在进一步的学习中发挥重要的作用.

  单元教学目标

  1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算.

  2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题.

  3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题.

  4、让学生在具体生动的情景中感受学习数学的价值.

  单元教学重点

  1、分数除法的`计算;

  2、分数除法问题的解答;

  3、比的意义和基本性质的理解与运用.

  单元教学难点

  1、理解分数除法计算法则的算理;

  2、比的应用.

  1、分数除法

  教学目标

  1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

  2、使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

  教学重点

  1、理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算法则,并能应用法则正确计算。

  3、一个数除以分数的算理。

  4、掌握分数除法的统一法则。

  教学难点

  1、学会分数除以整数的计算法则,并能应用法则正确计算。

  2、引导学生推导出整数除以分数的方法。

  3、对于一个数除以分数的算理的理解。

  第一课时分数除法的意义和分数除以整数

  教学过程:

  一、创设情景导入:

  同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

  二、新知探究:

  (一)分数除法的意义

  1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式.

  2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

  3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

  4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.

  5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.

  (二)分数除以整数

  1、小组学习活动:

  问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

  问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

  [活动要求]

  ①先独立动手操作,再在组内交流,

  ②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

  2、汇报学习结果:

  3、学生独立阅读教材

  4、归纳总结:这节课你们学会了什么?

  指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.

  三、巩固与提高

  ①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

  ②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗

  四、课后作业

  练习八第1、2、3题

  五、板书设计:

  分数除法的意义和分数除以整数

  例1.100×3=300(ɡ)1/10×3=3/10(㎏)

  300÷3=100(ɡ)3/10÷3=1/10(㎏)

  300÷100=3(盒)3/10÷1/10=3(盒)

  例2.4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5

  4/5÷3=4/5×1/3=4/15

《分数与除法》教学设计4

  复习激趣《分数与除法》教学设计目标导学《分数与除法》教学设计自主合作《分数与除法》教学设计汇报交流《分数与除法》教学设计变式训练创境激疑

  一、导入揭题。

  1、复习:76是()数,它表示()。107的分数单位是(),它有()个这样的分数单位。

  2、观察:5÷8=4÷9=这两道题能得到整数商吗?

  3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

  合作探究

  二、明确学习目标。(在此处明确)

  1、通过观察、探究,理解分数与除法的关系。

  2、通过练习,会用分数表示两个数相除的商。

  三、指导学生自主学习标杆素材、展示、反思、训练、点拨。通过观察、操作,自主探究分数与除法的关系。

  例1、把一个蛋糕平均分给3人,每人分得多少个?

  学习要求:

  1、平均分怎样列式?

  2、同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

  3、观察这两种解法有什么联系?

  例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

  1、平均分同样可以列式为:3÷4。

  2、小组合作探究:3÷4的商能不能用分数表示呢?【练后反思】通过进一步探究,你发现分数与除法有什么关系了吗?

  【被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?】

  拓展应用

  一个正方形的周长是64cm,它的边长是周长的`几分之几?

  总结

  通过这节课的学习,你有什么收获?

  作业布置

  在括号里填上适当的数。5÷8=12÷17=()÷()=m÷n(n≠0)=

  板书设计

  分数与除法

  例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

  被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)

《分数与除法》教学设计5

  一、教学内容

  分数与除法,教材第65、66页例1和例2

  二、教学目标

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、使学生掌握分数与除法的关系。

  三、重点难点

  1、理解、归纳分数与除法的关系。

  2、用除法的意义理解分数的意义。

  四、教具准备

  圆片、多媒体课件。

  五、教学过程

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0、5(块)

  (三)教学实施

  1、学习教材第65页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0、3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  (3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2、观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3、学习例2 。

  (1)如果把3块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)(2)3 ÷ 4的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 "?(把3块饼看作单位“1”。)把它平均分成4份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1块饼平均分成4份,得到4个,3个饼共得到12个,平均分给4个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3块饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  (3)加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?(表示把单位“1 “平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样一份的数。)

  (4)巩固理解

  ①如果把2块饼平均分给3个人,每人应该分得多少块?2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4、归纳分数与除法的关系。

  (l)观察讨论。

  请学生观察1÷3 =(块)3÷4 =(块)讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  (2)思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  (3)用字母表示分数与除法的关系。

  老师:如果用字母a 、b分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b =(b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5、巩固练习:

  (1)口答:

  ①7÷13==()÷()()÷24=9÷9=0、5÷3=n÷m=(m≠0)

  ②1米的等于3米的()

  ③把2米的绳子平均分3段,每段占全长的(),每段长()米。

  解释0、5÷3=是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的()

  ②1米的与3米的一样长。()

  ③一根木料平均锯成3段,平均每锯一次的"时间是所用的总时间的。()

  ④把45个作业本平均分给15个同学,每个同学分得45本的。()(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析

  本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的`产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0、5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

《分数与除法》教学设计6

  教学目标

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

  3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

  教学重难点

  理解分数与除法的关系

  教学准备

  每人准备4张同样大小的圆片

  教学过程

  一、引入情境,揭示例题

  口答题

  1、把8块饼干平均分给4个小朋友,每人分得几块?

  2、把4块饼干平均分给4个小朋友,每人分得几块?

  3、把3块饼干平均分给4个小朋友,每人分得几块?

  怎样列式?板书3÷4

  引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

  不满1块那该怎么表示呢?

  生:小数或分数

  二、实践操作探索研究

  师:那怎样用分数表示3÷4的`商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

  学生动手操作

  教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

  师:接下来我们请同学汇报一下他们研究所得结果。

  (生讲述这样分的理由)

  教师总结:

  (1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

  (2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

  总结:把3块饼干平均分给4个小朋友,每人分得3/4块

  板书:3÷4=3/4(块)

  师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

  学生口述理由。板书:3÷5

  师:想想该怎么去分?把你的想法和同桌交流下。

  指名让学生说说思考过程。

  板书:3÷5=3/5(块)

  师:如果分给7个小朋友呢?

  学生口述3÷7=3/7(块)

  三、归纳总结,围绕主题

  师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

  板书课题:分数与除法的关系

  生相互交流。教师板书:被除数÷除数=

  师:除法算式又可以写成什么形式?

  生补充:被除数÷除数=被除数/除数

  师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

  生:a÷b=a/b

  师:这里的a和b可以取任何数吗?为什么?

  生:除数不能为0。

  师:分数和除法之间的关系,你有什么好的方法记住它们吗?

  生交流讨论并回答

  师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

  四、巩固练习,拓展延伸

  师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

  集体校对。

  师引导:比较上下两行有什么不同?

  在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

  师:接下来请大家独立完成“试一试”两小题。

  然后小组交流你是怎么想的?

  师:把7分米改写成用米作单位,可以列怎样的除法算式?

  生:7÷10=7/10(米)

  师:第二个呢?

  生:23÷60=23/60(时)

  师:独立完成“练一练”的第二题

  集体讲评校对。

  师:完成“练习八”的第一题口答

  师:完成“练习八”的第三题

  学生在书本上完成,教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

  五、课堂作业

  完成“练习八”的第二题

  教后反思:

  本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。

《分数与除法》教学设计7

  教学内容:

  教学目标:

  1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法。

  3、培养学生动手操作、观察、比较和归纳的能力。

  4、培养学生团结合作、关心他人、先人后己等优良品质。

  教学重点:理解、掌握分数与除法的关系。

  教学难点:理解分数商a/b(b≠0)的意义。

  教学具准备:教学课件及3张完全相同的圆和剪刀。

  教学过程:

  一、设置疑问,揭示课题

  1、请同学们计算下面各题,你能把商分为哪几类?

  36÷6=64÷5=0。880÷5=16

  3÷7=5÷10=0。54÷9=

  然后引导学生归纳分类:

  36÷6=6和80÷5=16的商为整数;

  4÷5=0。8和5÷10=0。5的商为有限小数;

  3÷7=和4÷9=的商为循环小数。

  2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)

  二、创设情境,引导探索

  1、创设情境,引入关系

  师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想

  要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,

  大家愿意和老师一起做一下详细的计划吗?

  生:愿意!

  师:好!那我们大家就一起来吧!

  师:请看我们班级为这次活动准备的食品:

  食品名称食品数量班级人数平均每人分的数量

  苹果40个4740÷47

  饮料39瓶4739÷47

  花生8千克478÷47

  上面表格里的商都不能用整数的.商来表示,除了可以用小数来表示,能否用

  其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。

  2、层层深入,感知关系

  师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

  师:同学们愿意帮xx同学分一分蛋糕吗?

  生:愿意!

  师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?

  要把蛋糕平均分成几份?

  怎样列式?(指名口述算式)

  1÷3=

  师:大家拿出练习本来计算这个商是多少?(用小数表示)

  生:0。333…或

  课件显示:1÷3=0。333…或

  师:这个商用小数表示太麻烦了,能不能用分数来表示呢?

  请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?

  生:

  师:对了!那么上面的算式1÷3的商可以用分数表示了,

  即:1÷3=(个)

  (2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?

  (3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师

  出示课件:被除数÷除数=

  (4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?

  生:会!

  师出示:40÷47=?39÷47=?8÷47=?

  3、巩固关系

  师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

  生:想!

  师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

  ①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)

  ②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。

  ③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?

  ④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?

  ⑤算一算:师指一名同学板演算式:3÷4=(张)

  答:每人分得张。

《分数与除法》教学设计8

  教学内容:

  教学目标:

  1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法。

  3、培养学生动手操作、观察、比较和归纳的能力。

  4、培养学生团结合作、关心他人、先人后己等优良品质。

  教学重点:

  理解、掌握分数与除法的关系。

  教学难点:

  理解分数商a/b(b≠0)的意义。

  教学具准备:

  教学课件及3张完全相同的圆和剪刀。

  教学过程:

  一、设置疑问,揭示课题

  1、请同学们计算下面各题,你能把商分为哪几类?

  36÷6=64÷5=0、880÷5=16

  3÷7=5÷10=0、54÷9=

  然后引导学生归纳分类:

  36÷6=6和80÷5=16的商为整数;

  4÷5=0、8和5÷10=0、5的商为有限小数;

  3÷7=和4÷9=的商为循环小数。

  2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)

  二、创设情境,引导探索

  1、创设情境,引入关系

  师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想

  要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?

  生:愿意!

  师:好!那我们大家就一起来吧!

  师:请看我们班级为这次活动准备的食品:

  食品名称食品数量班级人数平均每人分的数量

  苹果40个4740÷47

  饮料39瓶4739÷47

  花生8千克478÷47

  上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用

  其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。

  2、层层深入,感知关系

  师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

  师:同学们愿意帮xx同学分一分蛋糕吗?

  生:愿意!

  师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?

  要把蛋糕平均分成几份?

  怎样列式?(指名口述算式)

  1÷3=

  师:大家拿出练习本来计算这个商是多少?(用小数表示)

  生:0、333…或

  课件显示:1÷3=0、333…或

  师:这个商用小数表示太麻烦了,能不能用分数来表示呢?

  请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?

  生:

  师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)

  (2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?

  (3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师

  出示课件:被除数÷除数=

  (4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?

  生:会!

  师出示:40÷47=?39÷47=?8÷47=?

  3、巩固关系

  师:“六一”联欢的'时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

  生:想!

  师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

  ①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)

  ②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。

  ③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?

  ④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?

  ⑤算一算:师指一名同学板演算式:3÷4=(张)

  答:每人分得xx张。

《分数与除法》教学设计9

  教学目标:

  知识与技能:

  1、在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  2、探索并掌握分数除以整数的计算方法,并能正确计算。

  3、能够运用分数除以整数,解决简单的实际问题。

  过程与方法:

  让学生在独立思考与合作交流的过程中提高应用所学知识解决实际问题的能力。

  情感态度与价值观:

  让学生在观察、思考、探索中体验成功的喜悦。

  教学重难点:

  重点:探索并掌握分数除以整数的计算方法,并能正确计算。

  难点:在涂一涂,算一算等活动中,探索并理解分数除法的意义。

  教学具准备:

  多媒体课件,投影仪。

  教学过程:

  一、复习导入,激发学习兴趣,明确学习主题。

  1、口算

  8×3/40=

  21×2/7=

  5/27×9=

  5/6×12=

  4/5×5/8=

  3/7×7/10=

  2、说出下列各数的倒数,你是如何求的?

  1/5

  6/7

  3/4

  3、列式计算

  把4张长方形的纸平均分成2份,每份是多少?

  把1张长方形的纸平均分成2份,每份是多少?

  4、根据演示说一说。

  假如这是一张纸,请根据演示(把一张纸的.4/7平均分成2份)说一说把什么平均分成2份。(竖着分、横着分)

  2、你能用算式表示吗?

  把一张纸的4/7平均分成2份,每份是这张纸的几分之几?你能列出算式吗?说说你是怎样想的。

  这节课我们就共同探讨分数除法

  (一)分数除以整数中相关知识。

  出示课题:分数除法

  (二)分数除以整数意义和计算方法

  二、合作交流,共同解决问题。

  1、探讨分数除以整数的意义。

  电脑演示把一张纸的4/7平均分成2份,每份是这张纸的2/7

  把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

  你能用算式表示吗?说说你是怎样想的。

  电脑直观演示,得出每份是这张纸的4/21

  通过上面的学习,你知道了什么?

  2、探讨分数除以整数的计算方法

  教材第26页填一填、想一想:在()里填上得数,在○里填上“>”、“

  如:1÷4=()等三组题

  1×1/4=()

  1÷4○1×1/4

  观察等式左右两边,你发现了什么?

  1÷4=1×1/4

  10÷5=10×1/5

  7÷3=7×1/3

  根据除以一个整数(零除外)等于乘这个整数的倒数

  我们来试一试:

  8/9÷6

  4/15÷12

  三、深化练习,提高应用能力。

  1、

  3/8÷5

  6/13÷9

  5/8÷108/15÷6

  2、一小瓶果酱有1/2千克,小明家5天吃完,平均每天吃多少千克?是多少克?

  3、填一填

  ()×5=1/2

  ()×2=4/5

  4×()=1/4

《分数与除法》教学设计10

  教学目标:

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点:

  重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

  难点:理解可以用分数表示两个数相除的商。

  教学过程:

  一、导入揭题。

  1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。

  2、观察:5÷8=4÷9=这两道题能得到整数商吗?

  3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

  二、探索新知

  1、教学例1

  (1)课件出示例1

  把一个蛋糕平均分给3人,每人分得多少个?

  (2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

  (3)汇报讨论结果

  (4)观察这两种解法有什么联系?

  2、教学例2、

  把3个饼平均分给4个孩子,每个孩子分得多少个?

  (1)平均分同样可以列式为:3÷4。

  (2)小组合作探究:3÷4的商能不能用分数表示呢?

  (3)通过进一步探究,你发现分数与除法有什么关系了吗?

  师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的'(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

  三、拓展应用

  一个正方形的周长是64cm,它的边长是周长的几分之几?

  四、总结

  通过这节课的学习,你有什么收获?

  五、作业布置

  完成教材第50页"做一做"

《分数与除法》教学设计11

  教学目标

  1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

  教学重点

  找准单位1,找出等量关系.

  教学难点

  能正确的分析数量关系并列方程解答应用题.

  教学过程

  一、复习、引新

  (一)确定单位1

  1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

  3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

  (二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

  1.找出题目中的已知条件和未知条件.

  2.分析题意并列式解答.

  二、讲授新课

  (一)将复习题改成例1

  例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

  1.找出已知条件和问题

  2.抓住哪句话来分析?

  3.引导学生用线段图来表示题目中的数量关系.

  4.比较复习题与例1的相同点与不同点.

  5.教师提问:

  (1)棉田面积占全村耕地面积的 ,谁是单位1?

  (2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

  (3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是 公顷.

  答:全村耕地面积是75公顷.

  6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

  (公顷)

  (根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

  (二)练习

  果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

  1.找出已知条件和问题

  2.画图并分析数量关系

  3.列式解答

  解1:设一共有果树 棵.

  答:一共有果树640棵.

  解1: (棵)

  (三)教学例2

  例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

  1.教师提问

  (1)题中的已知条件和问题有什么?

  (2)有几个量相比较,应把哪个数量作为单位1?

  2.引导学生说出线段图应怎样画?上衣价格的

  3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)

  4.让学生独立用列方程的方法解答,并加强个别辅导.

  解:设一件上衣 元.

  答:一件上衣 元.

  5.怎样直接用算术方法求出上衣的单价?

  (元)

  6.比较一下算术解法和方程解法的相同之处与不同之处.

  相同点:都要根据数量间相等的.关系式来列式.

  不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

  三、巩固练习

  (一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

  提问:谁是单位1?数量间相等的关系式是什么?怎样列式?

  (米)

  (二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

  (三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

  1.课件演示:

  2.列式解答

  四、课堂小结

  这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?

  五、课后作业

  (一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

  (二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

  (三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

  六、板书设计

《分数与除法》教学设计12

  教学目标:

  1、通过对比两个除法算式与一个乘法算式,比较已知数和得数,理解并概括出分数除法的意义。

  2、掌握分数除以整数的计算方法。

  3、通过教学,培养学生的知识迁移能力和抽象、概括能力。

  4、使学生明确知识间是相互联系的。

  教学重难点:

  重点:

  理解分数除法的意义,掌握分数除以整数的`计算方法。

  难点:

  掌握分数除以整数的计算方法。

  教学过程:

  一、导入

  1、例1。

  2、改编条件和问题,用除法计算。

  二、教学实施

  1、初步理解分数除法的意义。

  师问:如果将一盒重八分之五千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

  学生试着列出算式。

  引导观察:这几道算式之间有怎样的关系?分数除法是什么样的运算?它的意义和整数除法的意义是否相同?

  2、归纳概括分数除法的意义。

  3、分数除以整数。

  (1)例1引导学生分析并用图表示数量关系。

  师问:求每份是这张纸的几分之几,怎样列式?

  (2)列式计算。

  师问:从图上看,结果是多少?这个结果是怎样得到的?

  学生折一折,算一算。

  (3)理清思路。

  思路一:把五分之四平均分成2份,就是把4个五分之一平均分成2份,每份是2个五分之一,也就是五分之二。

  思路二:把五分之四平均分成2份,求每份是多少,就是求五分之四的二分之一是多少。

  (4)总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

  5、巩固练习。完成教材第30页“做一做”。

  三、课堂作业设计

  1、填空。

  (1)分数除法的意义与整数除法的意义( ? ),都是已知( ? ?)与( ? ?),求( ? ? )的运算。

  (2)分数除以整数(0除外),等于分数( ? ?)这个整数的( ? ?)。

  2、计算并验算。

《分数与除法》教学设计13

  教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

  教学目标:

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学过程:

  一、复习引入

  1.列式,说说数量关系。

  小明2小时走了6km,平均每小时走多少千米?

  速度=路程÷时间

  2.填空。

  2/3小时有()个1/3小时,1小时有()个1/3小时。

  3.口算,说说分数除以整数的计算方法。

  (1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

  (分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

  4.引入课题。

  我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

  今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。

  板书课题:一个数除以分数。

  二、解决问题,发现算法

  1.理解题意,列出算式。

  (1)出示例3。

  (2)学生读题,理解题意。

  (3)列出算式,说出列式根据什么数量关系。

  板书:2÷(2/3)(5/6)÷(5/12)

  2.探索整数除以分数的计算方法。

  (1)2÷(2/3)如何计算呢?让我们画出线段图看看。

  (2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?

  (将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

  (3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的'想法与小组成员交流讨论一下。

  (4)根据学生的回答把线段图补充完整,板书计算思路。

  先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

  再求3个1/3小时走了多少千米,算式:2×(1/2)×3

  (5)找出计算方法。

  板书:(乘法结合律)

  现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

  启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

  观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

  强调:被除数没有变,除号变乘号,除数变成了它的倒数。

  (6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

  板书,学生齐读。

  3.探索分数除以分数的计算方法。

  (1)让学生尝试计算5/6÷5/12。

  我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。

  (2)学生汇报,教师板书:

  (3)为什么写成×(12/5)?

  (4)怎样验证这种计算结果是正确的?

  学生可能回答:

  ①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

  再求12个1/12小时走了多少千米,算式是5/6×1/5×12

  ②用乘法验算。

  (5)回答“谁走得快些”。

  (6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

  让同桌学生相互议一议,再指名回答。

  (7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

  强调:除以一个不等于0的数。

  齐读法则。

  三、巩固练习

  1.口算。(采用口算对折卡片)

  (1)不能约分的2÷3/5=1/3÷2/5=

  (2)能约分的3÷3/4=2/7÷6/7=

  2.完成课本第31页“做一做”第1题,填在书上。

  第2题,写在课堂练习本上,写出过程。

  3.直接写出得数。

  1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

  四、师生共同小结

  1.这节课我们学习了哪些知识?

  2.一个数除以分数的计算方法是什么?

  五、布置作业(略)

《分数与除法》教学设计14

  教学内容:

  教材第65、66页例1和例2

  教学目标:

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、使学生掌握分数与除法的关系。

  教学重难点:

  1、理解、归纳分数与除法的关系。

  2、用除法的意义理解分数的意义。

  3、理解分数的两种意义。

  教具准备:圆片。

  教学过程:

  一、旧知铺垫。

  1、表求什么意思?它的分数单位是什么?它有几个这样的分数单位?

  2、 7个是()是()个

  3个是()是()个

  3、把6块饼平均分给3人,每人得多少块?师:怎样列式?

  板书:每份数=总数÷总份数

  二、教学实施

  1.学习教材第65页的例1 。

  把练习3改成“把1块饼平均分给3人,每人得多少块?”就成课本的例1。

  (l)请学生读题。列式。

  师:为什么用除法?结果是多少?

  (2)分组操作、讨论、汇报。

  生1:就是把1个蛋糕看成单位“1 ",把单位“1 ”平均分成三份,表示这样一份的数,可以用分数来表示,1块的就是块。

  根据学生回答。(板书:1 ÷ 3 =)

  师:从图中可以看出1 ÷ 3和都表示阴影部分这一块,所以1÷3=

  2、学习例2 。

  (1)板书例题:“把3块饼平均分给4人,每人得多少块?”

  (2)指名读题,理解题意并列出算式。板书:3 ÷ 4

  师:3 ÷ 4的.计算结果用分数表示是多少?

  请同学们用圆片分一分。

  师:根据题意,我们可以把什么看作单位“1 "?(把3块月饼看作单位“1 ”。)把它平均分成4份,每份是多少,你想怎样分?

  请同学到演示分的过程。

  学生有两种分法。

  方法一:可以1个1个地分,先把1块月饼平均分成4份,得到4个,3块月饼共得到,12个,平均分给4个学生。每个学生分得3个,合在一起是块月饼。

  师根据学生回答板书:3块月饼的就是块。

  方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块月饼,所以两人分得块。

  师相应板书:1块月饼的就是块。

  (3)理解。

  师:块饼表示什么意思?

  (4)练习。

  说说下面分数的两种意义。

  3、归纳分数与除法的关系。

  (l)观察讨论。

  请学生观察:1 ÷ 3 = 3 ÷ 4 =

  讨论除法和分数有怎样的关系?

  学生充分讨论后,老师引导学生归纳出:

  被除数相当于分子,除数相当于分母,除号相当于分数中的分数线。

  用文字表示是:被除数÷除数=

  师讲述:分数是一种数,除法是一种运算。

《分数与除法》教学设计15

  学情分析:

  五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。

  教学内容分析:

  《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把 4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

  教学目标:

  1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

  2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

  3、能够运用分数除以整数的方法解决简单的实际问题。

  教学重点:

  引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

  教学难点:

  1、探索分数除以整数的计算方法。

  2、能够运用分数除以整数的方法解决简单的实际问题。

  教学方法:

  导学教学法

  创新理念:

  “有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。

  教具准备:

  长方形纸、课件。

  教学流程:

  一、 创设情境 提出问题

  (1) 把一张纸的 4/7平均分成2份,每份是这张纸的几分之几?

  (2) 把一张纸的` 4/7 平均分成3份,每份是这张纸的几分之几?

  【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】

  二、 自主探究 小组交流

  (教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)

  自主学习提示

  1. 利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

  2. 同桌之间说一说彼此的想法。

  3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。

  【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】

  三 交流释疑

  1、 初步感知分数除法

  把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?

  请同学们拿出图(一)来涂一涂。

  交流:为什么要这样涂,每份是这张纸的几分之几呢?

  还有不同的涂法吗?

  能根据这个过程列出一个除法算式吗?

  这个除法算式和以前学的除法有什么不同?

  这就是这节课我们要学习的分数除法。(板书)

  【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】

  2、 初探算法

  把一张纸的 4/7 平均分成3份,每份是这张纸的几分之几?

  请大家在图(二)的上面涂一涂。

  交流:(展示学生不同的涂法)

  同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。 谁能根据这一过程列出一个算式。

  怎样才能算出得数呢?

  (师提问:计算时为什么要用 × 1/3?)

  观察3和1/3 有什么关系,由除以3变成乘3的倒数 ,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

  (教师出示三组算式)

  1/3÷5 4/5÷31/3÷5

  指生口算。

  让学生观察每一组算式,说一说发现了什么?

  根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?

  (学生口述算法后)

  【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】

  四、实践应用

  1、算一算

  9/10÷3015/16÷20xx/15÷21 8/9÷6 5/6÷15

  2、填一填

  师:学会了知识就要灵活的运用,这道题你们能填上吗?

  学生独立在书上第26页填一填,想一想。

  集体订正。

  3、解决问题。

  师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?

  学生在练习本上列式解答。

  指生汇报完成情况。

  运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。

  (指生口头编题,其他学生解决)

  【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】

  五、课堂总结

  学生谈一谈本节课的收获。

  同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

  六、布置作业:

  22页练一练

  七.板书设计:

  分数除法(一)

  ——分数除以整数

  分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。

  (1)4/7÷2 (2) 4/7÷3

  =4 /7×1/2

  =2/7

  教学反思:

  《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:

  一、充分利用学生最佳的学习状态

  课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。

  二、让学生在不同的活动中探索数学。

  数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。

  三、让学生在不同层次的练习中应用数学。

  学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。

【《分数与除法》教学设计】相关文章:

《分数与除法》教学设计06-02

“分数与除法的关系”教学设计05-25

分数除法的意义教学设计(通用7篇)01-15

整式除法教学设计11-25

《口算除法》教学设计06-23

《除法的验算》教学设计06-07

有余数除法教学设计10-15

苏教版《分数乘分数》教学设计06-12

分数的意义教学设计06-15

分数的认识教学设计06-07