《圆柱体》教学设计
我要投稿 投诉建议

《圆柱体》教学设计

时间:2023-06-02 13:37:11 教学设计 我要投稿

《圆柱体》教学设计

  作为一名教职工,常常需要准备教学设计,借助教学设计可以更好地组织教学活动。那么问题来了,教学设计应该怎么写?下面是小编为大家整理的《圆柱体》教学设计,仅供参考,大家一起来看看吧。

《圆柱体》教学设计

《圆柱体》教学设计1

  教材版本

  《义务教育课程标准实验教科书》 (人教版) 六年级数学下册。

  课程标准摘录

  1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。

  2、探索某些实物体积的测量方法。

  学情与教材分析

  “圆柱的体积” 是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。

  学习目标

  1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。

  2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。

  3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。

  4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。

  5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。

  学习重点

  圆柱的体积计算方法

  学习难点

  圆柱体积计算公式的推导。

  教具、学具准备:

  1、师:圆柱体积计算公式推导教具,课件。

  2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。

  教学设想

  本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。

  教法、学法

  演示法、启发引导;实验、合作探究、尝试练习。

  评价方案

  1、通过小组合作实验完成活动检测目标1、4、5的达成。

  2、通过提问检测目标3、4、5的达成。

  3、通过评价样题检测目标1、2、4的达成。

  评价样题

  1、

  2、

  教学过程

  一、激活旧知,引出新知

  1、计算下面物体的体积

  (1)长方体的长20厘米,宽10厘米,高8厘米。

  (2)正方体棱6分米

  2、回忆一下圆面积的计算公式是如何推导出来的?

  [学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。]

  教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的`一半,长方形的宽相当于圆的半径。因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR。

  [设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。]

  3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?

  [设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。]

  板书:长方体的体积=底面积×高.

  [设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。]

  圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。

  板书:圆柱体所占空间的大小叫做圆柱的体积。

  师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积)

  二、自主合作,探索新知

  1.求圆柱体容器中水的体积

  出示长方体容器:问,这是什么?

  [学情预设:学生可能说出长方体容器。]

  问:怎么求长方体容器中水的体积呢?

  [学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。] 问:如果换成圆柱体容器又如何求其中水的体积呢?

  [学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器)

  2.橡皮泥圆柱体的体积

  (出示橡皮泥做成的圆柱体)

  问:这是一个什么样的立体图形?

  问:它是用橡皮泥做成的。你能想办法求出它的体积吗?

  [学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。]

  3.常用圆柱的体积.

  课件出示圆柱体压路机的滚筒的图片。

  问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?

  [设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。]

  小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。

  4.探究规律

  问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:

  课件出示操作讨论提纲:

  (1)圆柱体可以转化为什么样的立体图形?

  (2)转化后的立体图形体积与圆柱的体积大小是否有变化?

  (3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。

  学生讨论,教师参与小组讨论、点拨、操作。

  问:下面哪个小组来先进行汇报。

  各组派代表边汇报边演示。

  [学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。]

  问:谁还有补充?(学生补充讲解)

  教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。

  师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。

  结合课件演示讲解。

  师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。

  师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh)

  〔设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标1、3、4、5.〕

  5、实际应用

  (1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗?

  例1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少? 学生独立完成,集体反馈矫正,说思路。

  (2)、完成评价样题

  〔设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标2、4. 〕

  三、巩固练习,拓展提高

  1、应用公式进行口算:

  2、

  3、

  [设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标2、4. ]

  四、全课总结,共谈收获

  通过今天的学习,你有什么收获?

  [设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。]

  五、课外创新,拓展延伸

  长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。 上、下面朝下时求出圆柱的体积=底面积×高,圆柱的体积还有没

《圆柱体》教学设计2

  教学目标:

  1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  教学难点:

  让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。

  教学方法

  操作法、推理法、讲授法

  教学过程

  一、复习引新。

  我们以前学过哪些立体图形?

  生答:长方体和正方体。

  它们的体积是怎么求的?

  长方体:长×宽×高,正方体:棱长×棱长×棱长。

  二、教学例4。

  1、出示长方体和正方体。

  它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?

  生答:体积=底面积×高,所以长方体和正方体的体积相等。

  2、出示圆柱。

  猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

  生猜测:相等。

  究竟如何,今天我们就一起来研究圆柱的体积。

  板书课题:圆柱的体积。

  问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)

  生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。

  依据是圆可以转化成长方形计算面积。

  3、出示课件。

  回顾圆的面积计算公式是怎样推导的。

  4、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  5、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的.底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  6、教师演示课件。

  把圆柱拼成了一个近似的长方体。

  7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积=底面积×高

  圆柱体积=底面积×高

  9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  10、用字母如何表示。

  11、出示例4。

  现在你知道圆柱的体积与长方体、正方体的体积相等了吗?

  为什么?

  生答:体积相等,都是用底面积×高。

  V=sh

  三、巩固练习。

  1、出示练习七第一题。

  学生直接把答案填写在表中。

  提问:你是根据什么填写的?

  2、练一练。

  这两题,你打算怎么计算?

  生答:不知道底面积,要先算出底面积,再乘高。

  3.14×2×5 = 62.8(平方厘米)

  3.14×(6÷2)×8 = 226.08(平方厘米)

  3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?

  问:这道题和前面做的有什么不同?怎么计算?

  生答:这是求容积的。所以数据是从里面量的。

  4、练习七第2题。

  观察下面的3个杯子,你能看出哪个杯子的饮料多?

  请学生猜一猜。

  请学生列出三道算式。

  (1)3.14×(8÷2)×4

  (2)3.14×(6÷2)×7

  (3)3.14×(5÷2)×10

  问:你能不求出结果直接比较出大小吗?

  生答:第一个杯子的饮料多。

  5、练习七第三题。

  学生独立解答。

  指名说说是怎样算的?

  3.14×3×5×1= 141.3(千克)

  141.3千克<150千克

  答:这个保温茶桶不能盛150千克水。

  四、总结。

  今天这节课你学到了什么?

《圆柱体》教学设计3

  一、教学内容

  教材第25页 例5、例6

  二、学习目标

  1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

  2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

  3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

  三、教学重难点

  1、重点:理解、掌握圆柱的体积公式的推导过程。

  2、难点:圆柱体积公式的推导过程。

  四、教学准备

  多媒体课件

  五、教学过程

  <一>创设情境、生成问题

  师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)

  生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算

  师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

  板书:圆柱的体积(课件)

  <二>探索交流、解决问题

  1、猜想

  师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?

  (生自由猜想,并讨论交流)师适当板书记录

  刚才那几个同学都很有想法,觉得圆柱的.体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下

  (课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)

  师:第一组图片中的两个圆柱有什么特征?

  生:底面一样,但是高度却不一样,体积也不一样

  师:第二组图片中的两个圆柱有什么特征?

  生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样

  师:那么通过刚才两个同学的回答,你能得出什么结论呢?

  小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小

  师:那么你能大胆的猜想一下圆柱的体积是如何计算的吗?

  生猜想......

  师:我们的猜想对不对,还是要用实验去证明

  2、推导圆柱体积计算公式

  师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法

  生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

  师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

  (课件出示作业纸)对应和公式推导

  选取小组的作业纸进行展示,有其他同学进行评定

  课件演示结果

  小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

  另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

  <三>巩固应用、内化提高

  2、

  3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

  8cm

  8cm

  498ml

  498ml

  10cm

  10cm

  <四>回顾整理、反思提升

  今天这节课你有什么新的收获说出来和大家一起分享吧!

《圆柱体》教学设计4

  教学内容:

  青岛版教材五四分段五年级下册第三单元第二个信息窗圆柱的表面积。

  教学目标:

  1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

  2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步发展学生的空间观念。

  3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

  教学难点:

  圆柱侧面积计算公式的推导过程。

  教学用具:

  茶叶盒,剪刀,计算器。

  教学过程:

  一、创设情境,导入新课

  师:在前面的学习中,我们认识了圆柱,并且知道生活中有很多物体的形状是圆柱。大家看,这些圆柱形状的物体。(课件出示)这些圆柱的制作都需要一定的材料。(课件出示一个茶叶盒)请同学们想一想,要求“制作一个茶叶盒需要多少材料”,实际上求的是圆柱的什么?(让学生边演示边说)

  二、动手操作,探究新知

  1.介绍圆柱的侧面积、底面积和表面积。

  师:要求“制作一个茶叶盒需要多少材料”,实际上是求圆柱的侧面面积和2个底面面积。(边指边说)我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。(让学生互相说一说“什么是圆柱的表面积”。)

  2.创疑激趣。

  师:我们知道,圆柱的底面是圆,我们已经会求圆的面积,可是圆柱的'侧面是一个曲面,我们又该怎样求它的面积呢?

  3.小组合作探究。

  师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形求出它的面积呢?(小组合作探究,出示要求,结合圆柱的特征,用剪一剪、比一比等方法进行研究。)

  4.小组汇报。

  5.教师小结,课件演示。

  师:刚才同学们把圆柱的侧面沿高剪开,展开后是一个长方形,利用长方形面积公式推导出了圆柱的侧面积的计算方法,下面我们便结合电脑演示,进一步加深理解。

  6.学习计算圆柱表面积。

  师:我们已经会求圆柱的侧面积,你现在会求圆柱的表面积了吗?(让学生回答,并口头列式,教师板书求表面积的算式,并板书课题“圆柱的表面积”。)

  三、运用知识,解决问题

  师:下面我们便利用学过的知识解决一些问题。

  1.只列式不计算。订正时,让学生说想法。

  2.完整解答下面各题。

  让学生独立审题。问:要求“制作笔筒需要多少材料”,实际是求圆柱的什么?(让学生列综合算式,集体订正。)

  四、知识拓展

  将一个底面直径是8分米,高是10分米的圆柱沿底面直径垂直切开,它的表面积增加()平方分米。

  师:增加了几个面?是怎样的两个面?

  (课件演示)

  五、全课总结

  师:通过本节课的学习,你有什么收获?

《圆柱体》教学设计5

  学 科:数学

  教学内容:最新人教版六年级数学下册第三章《圆柱的体积》

  教材分析:

  〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:

  教学目标

  知识目标:

  (1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。

  (2)通过操作让学生知道知识间的相互转化。

  能力目标:

  倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。

  情感目标:

  让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:推导圆柱体积计算公式的过程。

  教具、学具准备:

  采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。 教学过程:

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?

  (2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

  (4)说一说长方体体积的计算公式。

  2、出示橡皮泥捏成的圆柱体。

  出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?

  (有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!)

  3、创设问题情景。

  (课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?

  刚才的方法不是一种普遍的方法,那么在求圆柱体积的`时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)

  (设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)

  二、新课教学

  设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

  (一)学生动手操作探究

  1、回顾旧知,帮助迁移

  (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……

  (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

  (通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)

  2、小组合作,探究推导圆柱的体积计算公式。

  (1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体)

  老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。

  (2)学生以小组为单位操作体验。

  老师引导学生探究:

  ① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么?

  ② 如果分割得份数越多,你有什么发现?(电脑演示转化过程)

  ③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。

  (3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: ①切割后拼成了一个近似于什么的形体?

  ②圆柱的体积与拼成后的长方体的体积有什么关系?

  ③这个长方体的底面积等于圆柱的什么?

  ④长方体的高与圆柱体的高有什么关系?

  (二)教师课件演示

  1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。 ①把圆柱拼成长方体后,形状变了,体积不变。

  (板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

  (配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?

《圆柱体》教学设计6

  圆柱体教学目标:

  1、发现并理解圆柱体柱体的特征。

  2、在制作中理解并掌握圆柱体的表面积计算方法。

  3、在观察与操作中发展空间观念。教学重难点:在制作圆柱体的过程中,深刻理解圆柱体侧面展开长方形的长等于圆柱体的底面周长,深刻理解圆柱体表面积的计算方法。

  教学环节:

  一、情境导入

  (一)圆柱体的特征

  (1)展示生活中圆柱体生活中许多物体的形状都是圆柱体物体(PPT展示电池,杯子,奶粉盒等)

  (2)圆柱体的特征师:圆柱体有哪些特征?拿出现场剪开的.圆柱体的侧面,引导学生观察。

  生1:圆柱体共3个面,上下两个面是形状大小相同的圆形,

  生2:侧面摸上去有弧度,是一个曲面,展开后是一个长方形。

  二、探究新知,制作圆柱体。

  (1)思考圆柱体的特征,如何制作圆柱体。

  (2)学生尝试自己动手,师巡视,学生交流汇报。

  (3)同学们想到了两种制作图样的方法,哪种方法制作起来更方便?为什么?方法一:先准备好长方形,然后根据长方形的大小决定圆的大小。

  方法二:先制作两个大小相同的圆形,然后根据圆的大小决定长方形的大小。

  (4)思考:圆柱体的侧面展开后所得到的长方形与底面的圆形有什么关系?(计算出圆的周长,根据圆的周长确定长方形的长)

  总结:圆柱体的侧面展开后得到的长方形的长正好等于底面圆的周长。

《圆柱体》教学设计7

  教学目标

  知识与能力

  1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

  3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4.借助实物演示,培养学生抽象、概括的思维能力。

  过程与方法

  1.通过观察、实验、讨论,学生理解所学知识。

  2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。

  3.在讲解例题与巩固练习中,学生掌握基本的解题方法。

  情感、态度与价值观

  1.使学生感觉到数学就在身边,激发其学习数学的兴趣。

  2.通过实验操作及设问,培养其创造性思维和大胆的猜想。

  教学重点

  圆柱体体积的计算

  教学难点

  圆柱体体积的公式推导方法

  教学突破

  本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。

  教 具

  圆柱的体积公式演示教具,多媒体课件

  教学过程

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。

  (5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

  2,复习相关知识,为新课教学作铺垫。

  (1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)

  (2)出示圆柱体物品,指名学生指出各部分名称。

  二、新课教学

  设疑揭题:

  我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。。

  1.探究推导圆柱的体积计算公式。

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:

  ① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的.体积)

  ② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)

  讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?

  填表:请同学看屏幕回答下面问题,

  ④ 底面积(㎡)高(m)圆柱体积(m3)

  4 3

  5 6

  9 2

  (设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)

  例:一个圆柱形油桶,底面内直径是6分米,高是7分米.它的容积约是多少立方分米?(得数保留整立方分米)

  解: d=6dm,h=7dm.r=3dm

  S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

  V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分

  (设计意图:使学生注意解题格式,注意体积的单位为三次方)

  三、巩固反馈

  1.求下面圆柱体的体积。(单位:厘米)

  同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。

  ⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?

  四、拓展练习

  1.一个长方形的纸片长是6分米,宽4分米.用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由.(结果保留π)

  2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、

  五、课堂小结

  1.谈谈这节课你有哪些收获。

  2.解题时需要注意那些方面。

  六、布置作业

  1.课后练习1,2题

  2.拓展练习2题

  板书设计

  圆柱的体积

  长方体的体积=底面积x高

  圆柱——长方体 圆柱的体积=底面积x高

  V=sh

《圆柱体》教学设计8

  教案背景:

  冀教20xx课标版小学数学六年级下册第四单元

  教学课题:

  圆柱的侧面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

  2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的`情感。

  教学重点:圆柱侧面积的计算。

  教学难点:圆柱体侧面积计算方法的推导。

  教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

  学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

  教具准备:圆柱体教具、多媒体课件。

  学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。教学过程:

  一、复习导入,引入新知

  1、复习圆柱体的特征

  师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征?(指明学生回答后,课件动画展示同时师生小结)

  二、课堂小结

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

  三、课后作业

  应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧!附:板书设计

  圆柱的侧面积=底面周长×高→S侧=ch

  长方形面积=长×宽

  教学反思

  这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

  一、数学教学要注重数学思想和数学方法的渗透。

  在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

  二、重视学生的合作意识和实践能力的培养。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

  三、合理利用现代化教学手段辅助教学。

  侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

《圆柱体》教学设计9

  教学目标:

  1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;

  2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。

  3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。

  教学重点:

  掌握和运用圆柱体积计算公式进行正确计算。

  教学难点:

  理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

  教学准备:

  1、用于演示把圆柱体积转化成长方体体积的教具。

  2、多媒体课件。

  教学过程:

  一、复习导入、揭示课题

  谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)

  1、呈现长方体、正方体和圆柱的直观图。

  2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)

  3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。

  二、自主探究,精讲点拨

  1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?

  2、学生小组讨论、交流。

  教师:同学们自己先在小组里讨论一下

  (1)你准备把圆柱体转化成什么立体图形?

  (2)你是怎样转化成这个立体图形的?

  (3)转化以后的立体图形和圆柱体之间有什么关系?

  3、推导圆柱体积公式。

  学生交流,教师动画演示。

  (1)把圆柱体转化成长方体。

  (2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)

  (3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。

  (4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)

  (5)推导圆柱体积公式。

  讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)

  教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:

  圆柱的体积=底面积×高

  V = S h

  三、运用公示,解决问题

  教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?

  ①知道圆柱的底面积和高,可以求圆柱的体积。

  练习七的第1题:填表。

  ②知道圆柱的底面半径和高,可以求圆柱的体积。

  试一试。

  ③知道圆柱的底面积直径和高,可以求圆柱的.体积。

  练一练的第1题:计算下面各圆柱的体积。

  ④知道圆柱的底面周长和高,可以求圆柱的体积。

  一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?

  四、迁移应用,质疑反馈。

  1、判断正误,对的画“√”,错误的画“×”。

  2、计算下面各圆柱的体积。

  3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。

  五、全课小结。

  这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。

  六、作业布置:

  完成作业纸上的习题

  教学反思

  本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。

  而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  不足之处是:

  1、留给学生自由讨论、实践和思考的时间较少。教学时教师语言过于平缓,没有调动起学生的积极性。

【《圆柱体》教学设计】相关文章:

圆柱体积教学设计05-31

幼儿园大班《认识圆柱体》教案08-26

《球体与圆柱体》幼儿园大班教案04-03

《功》的教学设计06-01

春联教学设计04-08

《山村》教学设计04-10

白鹭教学设计04-10

雨中的教学设计04-08

亡羊补牢的教学设计04-08