高二导数教案
教学准备
1、教学目标
(1)理解平均变化率的概念。
(2)了解瞬时速度、瞬时变化率、的概念。
(3)理解导数的概念
(4)会求函数在某点的导数或瞬时变化率。
2、教学重点/难点
教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解
教学难点:会求简单函数y=f(x)在x=x0处的导数
3、教学用具
多媒体、板书
4、标签
教学过程
一、创设情景、引入课题
【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。
【板演/PPT】
【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系
h(t)=—4。9t2+6。5t+10。
如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?
【板演/PPT】
让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。
【设计意图】自然进入课题内容。
二、新知探究
[1]变化率问题
【合作探究】
探究1 气球膨胀率
【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢。从数学角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是
如果将半径r表示为体积V的函数,那么
【板演/PPT】
【活动】
【分析】
当V从0增加到1时,气球半径增加了气球的平均膨胀率为(1)当V从1增加到2时,气球半径增加了气球的平均膨胀率为
0。62>0。16
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了。
【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少?
解析:
探究2 高台跳水
【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=—4。9t2+6。5t+10。
如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?
(请计算)
【板演/PPT】
【生】学生举手回答
【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。
【师】解析:h(t)=—4。9t2+6。5t+10
【设计意图】两个问题由易到难,让学生一步一个台阶。为引入变化率的概念以及加深对变化率概念的理解服务。
探究3 计算运动员在
这段时间里的平均速度,并思考下面的问题:
(1)运动员在这段时间里是静止的吗?
(2)你认为用平均速度描述运动员的运动状态有什么问题吗?
【板演/PPT】
【生】学生举手回答
【师】在高台跳水运动中,平均速度不能准确反映他在这段时间里运动状态。
【活动】师生共同归纳出结论
平均变化率:
上述两个问题中的函数关系用y=f(x)表示,那么问题中的变化率可用式子
我们把这个式子称为函数y=f(x)从x1到x2的平均变化率。
习惯上用Δx=x2—x1,Δy=f(x2)—f(x1)
这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2
同样Δy=f(x2)—f(x1),于是,平均变化率可以表示为:
【几何意义】观察函数f(x)的图象,平均变化率的几何意义是什么?
探究2 当Δt趋近于0时,平均速度有什么变化趋势?
从2s到(2+△t)s这段时间内平均速度
当△ t 趋近于0时, 即无论 t 从小于2的一边, 还是从大于2的一边趋近于2时, 平均速度都趋近与一个确定的值 –13。1。
从物理的角度看, 时间间隔 |△t |无限变小时, 平均速度就无限趋近于 t = 2时的瞬时速度、因此, 运动员在 t = 2 时的.瞬时速度是 –13。1 m/s。
为了表述方便,我们用xx表示“当t =2, △t趋近于0时, 平均速度 趋近于确定值– 13。1”。
【瞬时速度】
我们用
表示 “当t=2, Δt趋近于0时,平均速度趋于确定值—13。1”。
局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。那么,运动员在某一时刻 的瞬时速度?
【设计意图】让学生体会由平均速度到瞬时速度的逼近思想:△t越小,V越接近于t=2秒时的瞬时速度。
探究3:
(1)。运动员在某一时刻 t0 的瞬时速度怎样表示?
(2)。函数f(x)在 x = x0处的瞬时变化率怎样表示?
导数的概念:
一般地,函数 y = f (x)在 x = x0 处的瞬时变化率是
称为函数 y = f(x) 在 x = x0 处的导数, 记作
或,
【总结提升】
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
[3]例题讲解
例题1 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热、如果第 x h时, 原油的温度(单位: )为 y=f (x) = x2–7x+15 ( 0≤x≤8 ) 、计算第2h与第6h时, 原油温度的瞬时变化率, 并说明它们的意义。
解: 在第2h和第6h时, 原油温度的瞬时变化率就是
在第2h和第6h时, 原油温度的瞬时变化率分别为–3和5、它说明在第2h附近, 原油温度大约以3 /h的速率下降; 在第6h附近,原油温度大约以5 /h的速率上升。
【高二导数教案】相关文章:
高二导数教案03-17
高二《劝学》教案03-21
高二《雷雨》教案08-20
高二二战教案03-15
高二教案《道士塔》教案05-31
关于高二化学的教案11-25
高二语文祝福教案03-20
中国的地形高二教案03-21
高二足球教案全集03-21